
1 Ordinary differential equa-

tions

Many physical problems can be reformulated in
terms of a system of ordinary differential equations

(ODEs),
y′(x) = f(x,y), (1)

with an initial condition

y(x0) = y0, (2)

where y and f(x,y) are generally understood as
column-vectors.

1.1 Runge-Kutta methods

Runge-Kutta methods are one-step methods where
the solution y is advanced by one step h = x1 − x0

as
y1 = y0 + hk, (3)

where k is a cleverly chosen (vector) constant. The
Runge-Kutta methods are distinguished by their
order: a method has order p if its error is O(hp+1)
for small h, or, in other words, if the solution of an
ODEs is a polynomial of the order p the ODEs is
integrated exactly by the method.

The first order Runge-Kutta method is simply
the Euler’s method

k = f(x0,y0). (4)

Second order Runge-Kutta method advances the
solution by an auxiliary evaluation of the deriva-
tive, e.g. the half-step method,

k0 = f(x0,y0) ,

y1/2 = y0 +
h

2
k0 ,

k1/2 = f(x1/2,y1/2) ,

k = k1/2 , (5)

or the two-point method,

k0 = f(x0,y0),

k1 = f(x1,y0 + hk0),

k =
1

2
(k0 + k1) . (6)

These two methods can be combined into a third
order method,

k =
1

6
k0 +

4

6
k1/2 +

1

6
k1 . (7)

Higher order Runge-Kutta methods have been
devised, with the most commonly used being the
famous Runge-Kutta-Fehlberg fourth-fifth order
method implemented in the renowned rkf45 (now
superseded by netlib.org/ode/rksuite).

1.2 Multi-step and predictor-

corrector methods

Multi-step methods try to use the information
about the function gathered at the previous steps.
They are generally not self-starting as there are no
previous points at the start of the integration. The
first step should be done with a one-step method.

Predictor-corrector methods use extra iterations
to improve the solution.

1.2.1 A two-step method

For example, having the two points, y0 and y1,
the sought function y can be approximated in the
vicinity of the point x1 as

ȳ(x) = y1 + y′

1 · (x − x1) + c · (x − x1)
2, (8)

where the coefficient c can be found from the con-
dition y(x0) = y0,

c =
y0 − y1 − y′

1 · (x0 − x1)

(x0 − x1)2
. (9)

Now y2 can be calculated as ȳ(x2) from (8).

1.2.2 A predictor-corrector method

Having the two-step approximation ȳ(x) one can
estimate f̄2 = f(x2, ȳ(x2)). Using this new infor-
mation one can improve the approximation (8) by
one order, namely

¯̄y(x) = ȳ(x) + d · (x − x1)
2(x − x0). (10)

The coefficient d can be found from the condition
¯̄y′(x2) = f̄2,

d =
f̄2 − y′

1 − 2c · (x2 − x1)

2(x2 − x1)(x2 − x0) + (x2 − x1)2
. (11)

Equation (10) gives a better estimate, y2 = ¯̄y(x2),
of the function at the point x2.

In this context the formula (8) is referred to as
predictor, and (10) as corrector. The difference be-
tween the two gives an estimate of the error.

1.3 Step-size control

The tolerance τ is the maximal accepted error on
the given integration step consistent with the re-
quired absolute (δ) and relative (ǫ) accuracies to
be achieved in the integration of an ODEs. Under
assumption of random distribution of errors on the
integration steps from a to b the tolerance, accord-
ing to the central limit theorem, scales as a square
root of the step-size h,



τ = (ǫ||y|| + δ)

√

h

b − a
. (12)

The error of the integration method on a given
step can be estimated e.g. by comparing the solu-
tions for a full-step and two half-steps (the Runge

principle),

err =
||yfull−step − ytwo−half−steps||

2p − 1
, (13)

where p is the order of the algorithm used.
The step is accepted if the error is smaller than

tolerance. The next step can be estimated accord-
ing to the (empirical) prescription

hnext = hprevious ×

(

tol

err

)Power

× Safety, (14)

where power ≈ 0.25, Safety ≈ 0.95. It is better
to pick such formula, that the full-step and two
half-step calculations share the evaluations of the
function f(x, y) which would increase the efficiency
of the algorithm.


