1 Monte Carlo quadratures

Monte Carlo integration is a numerical quadrature
where the abscissas are chosen randomly and no
assumptions about smoothness of the integrand are
made, not even that the integrand is continuous.

Plain Monte Carlo algorithm distributes points
(in a process called “sampling”) uniformly from the
integration region using either uncorrelated pseudo-
random or correlated quasi-random sequences of
points.

Adaptive algorithms, such as VEGAS and
MISER, distribute points non-uniformly, attempt-
ing to reduce integration error, using “importance”
and “stratified” sampling, correspondingly.

1.1 Multi-dimensional integration

One of the problems in multi-dimensional inte-
gration is that often the integration region Q is
quite complicated, with the boundary not easily de-
scribed by simple functions. However it is usually
a lot easier to find out whether a given points lies
within the integration region or not. Therefore a
popular strategy is to create an auxiliary rectangu-
lar volume V which contains the integration volume
Q) an an auxiliary function F which coincides with
the integrand inside the volume €2 and is equal zero
outside. Then the integral of the auxiliary function
over the (simple rectangular) auxiliary volume is
equal the original integral.

Unfortunately the auxiliary function is non-
continuous at the boundary and thus the ordi-
nary quadratures which assume continuous inte-
grand will fail badly here while the Monte Carlo
quadratures will do just as good (or bad) as with
continuous integrand.

1.2 Plain Monte Carlo sampling

Plain Monte Carlo is a quadrature with equal
weights and non-optimised random abscissas,

N
[1oV = w3 px).

where x a point in the multi-dimensional integra-
tion space. One free parameter, w, allows one con-
dition to be satisfied, that basically is the overall
normalisation, or, in other words the quadrature
has to integrate exactly a constant function. This
gives w = V/N,

(1)

N

[100V = £ 30 px) = vip.

i=1

(2)

According to the central limit theorem the error es-
timate € is close to

7
VN’

where o is the variance of the sample,

e=V (3)

(4)

The 1/+/N convergence of the error is quite slow
(albeit independent upon the smoothness of the in-
tegrand).

1.3 Importance sampling

Suppose that the points are distributed not uni-
formly but with some density p. The number of
points An in the volume AV is thus equal An =
pAV. Then the estimate of the integral is given as

[eqav =~ iﬂxim _ <f > G

p

The corresponding variance is now

)6
p p

Apparently if the ration f/p is close to a con-
stant, the variance is reduced. It is tempting to
take p = |f| and sample directly from the func-
tion. However in practice it is typically expen-
sive to evaluate the integrand. Therefore a better
strategy is to build an approximate density in the
product form, p(z,y,...,2) = pz(x)py(y) - .. p2(2),
and then sample from this approximate density. A
popular routine of this sort is called VEGAS. The
sampling from a given function can be done using
the Metropolis algorithm which we shall not discuss
here.

(6)

1.4 Stratified sampling

Another popular approach is actually very close
to our recursive adaptive integration routine (only
with random quadrature and in multi-dimensional
space): distribute more points where the error es-
timate is largest. However the “dividing by two”
strategy does not work for multi-dimensions as the
number of sub-volumes grows way too fast to keep
track of. Instead one estimates in which dimension
a subdivision should bring the most dividends and
only subdivides along this dimension. This is called
stratified sampling and here is the algorithm,

function strata(f, al[l], b[], n, acc)

estimate the average and the variance
using m-points plain Monte Carlo;

if the error is less than acc:

return the average and the
variance;

else:

for each dimension :

subdivide the volume in two
along the dimension;

estimate the sub-variances in
the two sub-volumes;

pick the dimension with the
largest sub-variance;

subdivide your volume in two along
this dimension;

dispatch two recursive calls to
each of the sub-volumes;

estimate the grand average and
grand variance;

return the grand average and grand
variance;

1.5 Quasi-random (low-discrepancy)
sampling

Pseudo-random points

L0+
0.8
0.6k
0.4

0.2

0.0k
0.0

10

0.2

0.4 0.6 0.8
Figure 1: A typical distribution of pseudo-random

points in two dimensions.

Pseudo-random sampling has high discrepancy!
— it typically creates regions with hight density of
points and other regions with very low density, see

IDiscrepancy is a measure of how unevenly the points are
distributed over the region.

Figure 1. In other words with pseudo-random sam-
pling there is a probability that all the n points
would fall into one and the same half of the region
and none into the other half.

Quasi-random sequences avoid this phenomenon
by distributing points in a highly correlated man-
ner with a specific requirement of low discrepancy,
see Figure 2. Quasi-random sampling is like a com-
putation on a grid where the grid constant must
not be known in advance as the grid is ever grad-
ually refined and the points are always distributed
uniformly over the region. The computation can be
stopped at any time.

The central limit theorem does not work in this
case as the points are not statistically independent.
Thus the variance can not be used as an estimate
of the error.

1.5.1 Lattice sampling

Let o, i = 1,...,d, (d is the dimension) be a set
of cleverly chosen irrational numbers, like square
roots of prime numbers. Then the kth point (in
the unit volume) of the sampling sequence will be
given as

x®) = {frac(kay), ..., frac(kaq)} , (7)
where frac(x) is the fractional part of x.

A problem with this method is that a high ac-
curacy arithmetics (e.g. long double) might be
needed in order to generate a reasonable amount of
quasi-random numbers.

Quasi-random points

Lor
0.8 "_:
0.6 :f
0.4l

0.2}

0.0L
0.0

0.2

0.4 0.6 0.8 1.0

Figure 2: A typical distribution of quasi-random
points in two dimensions.

