
11 Systems of linear equations

A system of linear equations of dimension n is a
set of n linear algebraic equations in n unknown
variables x1, . . . , xn,

n
∑

j=1

Aijxj = bi , i = 1, . . . , n . (1)

The system can be represented in matrix form as

Ax = b (2)

where A is the n×n matrix of coefficients, x is the
size-n column-vector of variables, and and b is a
size-n column-vector of right-hand-sides.

An efficient method to solve a system of linear
equations is to transform the original system into
an equivalent triangular system, Ty = c, where T is
an (upper) triangular matrix. A triangular system
can be readily solved by back-substitution:

yi =
1

Tii

(

ci −

n
∑

k=i+1

Tikyk

)

, i = n, . . . , 1 . (3)

One of the popular methods to transform a sys-
tem of linear equations into a triangular form is QR

decomposition. QR decomposition can be also used
for for linear least-squares fits.

1.1 QR decomposition

A rectangular n×m matrix A can be represented as
a product, A = QR, of an orthogonal n×m matrix
Q, QT Q = 1, and a right-triangular m × m matrix
R.

QR decomposition can be used to convert the
linear system Ax = b into the triangular system

Rx = QTb, (4)

which can be solved by back-substitution.
QR decomposition of a matrix can be computed

by means of modified Gram-Schmidt orthogonaliza-

tion.

1.1.1 Gram-Schmidt orthogonalization

Modified Gram-Schmidt orthogonalization is a
method to perform QR decomposition of a matrix
A by orthogonalization of its column-vectors ai:

for i = 1, . . . , m:

Rii = (aT
i ai)

1/2

qi = ai/Rii

for j = i + 1, . . . , m:

Rij = qT
i aj

aj = aj − qiRij

The matrix Q, made of columns qi, is orthogonal,
matrix R is right-triangular, and A = QR. The
factorization is unique under requirement that the
diagonal elements of R are positive. For a square
matrix of size n the complexity of the algorithm is
O(n3).

1.2 Determinant of a matrix

QR-decomposition allows an O(n3) calculation of
(the absolute value of) the determinant of a matrix.
Indeed,

det(A) = det(QR) = det(Q) det(R) . (5)

Since Q is an orthogonal matrix det(Q)2 = 1 and
therefore

| det(A)| = | det(R)| , (6)

where the determinant det(R) of a triangular ma-
trix R is simply a product of its diagonal elements.

1.3 Matrix inverse

The inverse A−1 of a square n×n matrix A can be
calculated by solving n linear equations Axi = zi,
i = 1, . . . , n, where zi is a column where all ele-
ments are equal zero except for the element number
i, which is equal one. The matrix made of columns
xi is apparently the inverse of A.

1.4 C♯ implementation

The following class implements QR-decomposition
and backsubstitution. The classes matrix and
vector are supposed to overload the following oper-
ators: “*” (multiplication; dot-product), “-” (sub-
traction), “∧” (transposition and multiplication),
“[]” (referencing a column vector of a matrix; ref-
erencing an element of a vector), “[,]” (referencing
an element of a matrix). //

using matrix=vmatrix; using vector=vector;

public class QRdecomposition{

public matrix Q, R;

public QRdecomposition(matrix A){

int m = A.ncols;

R = new matrix(m,m);

Q = A.copy();

for(int i=0;i<m;i++){

R[i,i]=System.Math.Sqrt(Q[i]^Q[i]);

Q[i]*=(1/R[i,i]);

for(int j=i+1;j<m;j++){

R[i,j]=Q[i]^Q[j];

Q[j]-=Q[i]*R[i,j]; } }

}

public vector qrback(vector b){

int m=R.ncols;

2vector c = Q^b;

vector x = new vector(m);

for(int i=m-1;i>=0;i--){

double s=0;

for(int k=i+1;k<m;k++)

s+=R[i,k]*x[k];

x[i]=(c[i]-s)/R[i,i]; }

return x;

}

}

//

