
1 Numerical integration

Numerical integration is an algorithm, also called
quadrature, to compute an approximation to a def-
inite integral in the form of a finite sum,

∫ b

a

f(x)dx ≈

n
∑

i=1

wif(xi) , (1)

where the abscissas xi and the weights wi are cho-
sen such that the quadrature is particularly well
suited for a given problem. Different quadratures
use different strategies of choosing the abscissas and
weights.

1.1 Quadratures with equally spaced
abscissas (Newton-Cotes)

Classical Newton-Cotes quadratures use prede-
fined, usually equally-spaced, abscissas. A quadra-
ture is called closed if the abscissas include the end-
points of the interval or the mid-point (which be-
comes end-point after halving the interval). Other-
wise it is called open.

If the integrand is diverging at the end-points (or
at the mid-point of the interval) the close quadra-
tures generally can not be used.

For an n-point classical quadrature the n free pa-
rameters wi can be chosen such that the quadra-
ture integrates exactly a set of n functions. In the
case of Newton-Cotes quadratures these functions
are polynomials [1, x, x2, . . . , xn−1]. The n-point
Newton-Cotes quadrature thus integrates exactly
the first n terms of the function’s Taylor expan-
sion1

f(a + t) =

∞
∑

k=0

f (k)(a)

k!
tk . (3)

The nth order term f(n)(a)
n! tn will not be inte-

grated exactly by an n-point quadrature and will
then result in the quadrature’s error2

ǫn ∝

∫ h

0

f (n)(a)

n!
tndt =

f (n)(a)

n!(n + 1)
hn+1 . (4)

If the function is smooth and the interval h is
small enough the Newton-Cotes quadrature can
give a good approximation.

1assuming that the integral is rescaled as
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f(a + t)dt . (2)

2Actually the error is often one order in h higher due to
symmetry of the the polynomials tk.

Here are a few examples of classical quadratures:
one-point closed,

∫ h

0

f(x)dx ≈ hf(
1

2
h) , (5)

three-point closed,

∫ h
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f(0) + 4f(
1

2
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, (6)

two-point open,
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four-point open,

∫ h
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1.2 Quadratures with optimized ab-
scissas (Gauss)

Gauss quadratures use optimally chosen weights wi

and, in addition, also abscissas xi. The number
of free parameters is thus 2n (n abscissas and n

weights) the Gaussian quadratures are of order 2n−

1 compared to only order n − 1 for equally spaced
abscissas.

Here is, for example, a two-point Gauss-Legendre
quadrature rule 3
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Unfortunately, the optimal points generally can
not be reused at the next iteration in an adaptive
algorithm (cannot be nested).

1.3 Subdivision of the interval vs
higher order quadrature

The higher order quadratures, say n > 10, suffer
from round-off errors as the weights wi generally
have alternating signs. Again, using high order
polynomials is dangerous as they typically oscillate
wildly and may lead to Runge phenomenon. There-
fore if the error of the quadrature is yet too big for
a sufficiently large n quadrature, the best strategy
is to subdivide the interval in two and then use the
quadrature on the half-intervals. Indeed, if the er-
ror is of the order hk, the subdivision would lead to

reduced error, 2
(

h
2

)k
< hk, if k > 1.
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1.4 Adaptive quadratures

Adaptive quadrature is an algorithm where the
integration interval is subdivided into adaptively
refined subintervals until the given accuracy is
reached.

Adaptive algorithms are built on pairs of quadra-
ture rules, a higher order rule (eg open-4) and a
lower order rule (eg open-2). The higher order rule
is used to compute the approximation to the inte-
gral. The difference between the higher order rule
and the lower order rule gives an estimate of the er-
ror. If the error is larger than the required accuracy,
the interval is subdivided into (two) smaller subin-
tervals and the procedure applies recursively to the
subintervals. The reuse of the function evaluations
made at the previous step is very important for the
efficiency of the algorithm. The equally-spaced ab-
scissas naturally provide such a reuse.

1.5 Gauss-Kronrod quadratures

Gauss-Kronrod quadratures represent a compro-
mise between equally spaced abscissas and optimal
abscissas: n points are reused from the previous
iteration (n weights as free parameters) and then
m optimal points are added (m abscissas and m

weights as free parameters). Thus the accuracy of
the method is n + 2m − 1. There are several spe-
cial variants of these quadratures fit for particular
types of the integrands.


