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PREFACE TO THE SECOND ENGLISH EDITION

The content and treatment in this edition remain in accordance with what was said in
the preface to the first edition (see below). My chief care in revising and augmenting has
been to comply with this principle.

Despite the lapse of thirty years, the previous edition has, with very slight exceptions,
not gone out of date. Its material has been only fairly slightly supplemented and modified.
About ten new sections have been added.

In recent decades, fluid mechanics has undergone extremely rapid development, and
there has accordingly been a great increase in the literature of the subject. The
development has been mainly in applications, however, and in an increasing complexity of
the problems accessible to theoretical calculation (with or without computers). These
include, in particular, various problems of instability and its development, including non-
linear regimes. All such topics are beyond the scope of our book; in particular, stability
problems are discussed, as previously, mainly in terms of results.

There is also no treatment of non-linear waves in dispersive media, which is by now a
significant branch of mathematical physics. The purely hydrodynamic subject of this
theory consists in waves with large amplitude on the surface of a liquid. Its principal
physical applications are in plasma physics, non-linear optics, various problems of
electrodynamics, and so on, and in that respect they belong in other volumes of the Course.

There have been important changes in our understanding of the mechanism whereby
turbulence occurs. Although a consistent theory of turbulence is still a thing of the future,
there is reason to suppose that the right path has finally been found. The basic ideas now
available and the results obtained are discussed in three sections (§§30-32) written jointly
with M. 1. Rabinovich, to whom I am deeply grateful for this valuable assistance. A new
area in continuum mechanics over the last few decades is that of liquid crystals. This
combines features of the mechanics of liquid and elastic media. Its principles are discussed
in the new edition of Theory of Elasticity.

This book has a special place among those I had occasion to write jointly with L. D.
Landau. He gave it a part of his soul. That branch of theoretical physics, new to him at the
time, caught his fancy, and in a very typical way he set about thinking through it ab initio
and deriving its basic results. This led to a number of original papers which appeared in
various journals, but several of his conclusions or ideas were not published elsewhere than
in the book, and in some instances even his priority was not established till later. In the new
edition, I have added an appropriate reference to his authorship in all such cases that are
known to me.

In the revision of this book, as in other volumes of the Course, I have had the help and
advice of many friends and colleagues. I should like to mention in particular numerous
discussions with G. I. Barenblatt, L. P. Pitaevskii, Ya. G. Sinai, and Ya. B. Zel’dovich.
Several useful comments came from A. A. Andronov, S. I. Anisimov, V. A. Belokon’, A. L.
Fabrikant, V. P. Krainov, A. G. Kulikovskii, M. A. Liberman, R. V. Polovin, and A. V.
Timofeev. To all of them I express my sincere gratitude.

Institute of Physical Problems E. M. LiFsHITZ
August 1984
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PREFACE TO THE FIRST ENGLISH EDITION

The present book deals with fluid mechanics, i.e. the theory of the motion of liquids and
gases.

The nature of the book is largely determined by the fact that it describes fluid mechanics
as a branch of theoretical physics, and it is therefore markedly different from other
textbooks on the same subject. We have tried to develop as fully as possible all matters of
physical interest, and to do so in such a way as to give the clearest possible picture of the
phenomena and their interrelation. Accordingly, we discuss neither approximate methods
of calculation in fluid mechanics, nor empirical theories devoid of physical significance. On
the other hand, accounts are given of some topics not usually found in textbooks on the
subject: the theory of heat transfer and diffusion in fluids; acoustics; the theory of
combustion; the dynamics of superfluids; and relativistic fluid dynamics.

In a field which has been so extensively studied as fluid mechanics it was inevitable that
important new results should have appeared during the several years since the last Russian
edition was published. Unfortunately, our preoccupation with other matters has
prevented us from including these results in the English edition. We have merely added
one further chapter, on the general theory of fluctuations in fluid dynamics.

We should like to express our sincere thanks to Dr Sykes and Dr Reid for their excellent
translation of the book, and to Pergamon Press for their ready agreement to our wishes in
various matters relating to its publication.

Moscow 1958 LaNDAU

L. D.
E. M. LiFsHITZ



EVGENII MIKHAILOVICH LIFSHITZ (1915-1985)t

Soviet physics suffered a heavy loss on 29 October 1985 with the death of the outstanding
theoretical physicist Academician Evgenii Mikhailovich Lifshitz.

Lifshitz was born on 21 February 1915 in Khar’kov. In 1933 he graduated from the
Khar’kov Polytechnic Institute. He worked at the Khar’kov Physicotechnical Institute
from 1933 to 1938 and at the Institute of Physical Problems of the USSR Academy of
Sciences in Moscow from 1939 until his death. He was elected an associate member of the
USSR Academy of Sciences in 1966 and a full member in 1979.

Lifshitz’s scientific activity began very early. He was among L. D. Landau’s first
students and at 19 he co-authored with him a paper on the theory of pair production in
collisions. This paper, which has not lost its significance to this day, outlined many
methodological features of modern relativistically invariant techniques of quantum field
theory. It includes, in particular, a consistent allowance for retardation.

Modern ferromagnetism theory is based on the ‘“Landau-Lifshitz” equation, which
describes the dynamics of the magnetic moment in a ferromagnet. A 1935 article on this
subject is one of the best known papers on the physics of magnetic phenomena. The
derivation of the equation is accompanied by development of a theory of ferromagnetic
resonance and of the domain structure of ferromagnets.

In a 1937 paper on the Boltzmann kinetic equation for electrons in a magnetic field, E.
M. Lifshitz developed a drift approximation extensively used much later, in the 50s, in
plasma theory.

A paper published in 1939 on deuteron dissociation in collisions remains a brilliant
example of the use of quasi-classical methods in quantum mechanics.

A most important step towards the development of a theory of second-order phase
transitions, following the work by L. D. Landau, was a paper by Lifshitz dealing with the
change of the symmetry of a crystal, of its space group, in transitions of this type (1941).
Many years later the results of this paper came into extensive use, and the terms “Lifshitz
criterion” and “Lifshitz point,” coined on its basis have become indispensable com-
ponents of modern statistical physics.

A decisive role in the detection of an important physical phenomenon, second sound in
superfluid helium, was played by a 1944 paper by E. M. Lifshitz. It is shown in it that
second sound is effectively excited by a heater having an alternating temperature. This was
precisely the method used to observe second sound in experiment two years later.

A new approach to the theory of molecular-interaction forces between condensed
bodies was developed by Lifshitz in 1954—1959. It is based on the profound physical idea
that these forces are manifestations of stresses due to quantum and thermal fluctuations of
an electromagnetic field in a medium. This idea was pursued to develop a very elegant and
general theory in which the interaction forces are expressed in terms of electrodynamic
material properties such as the complex dielectric permittivity. This theory of E. M.

t By A. F. Andreev, A. S. Borovik-Romanov, V. L. Ginzburg, L. P. Gor’kov, I. E. Dzyaloshinskil, Ya. B.
Zerdovich, M. 1. Kaganov, L. P. Pitaevskif, E. L. Feinberg, and 1. M. Khalatnikov; published in Russian in
Uspekhi fizicheskikh nauk 148, 549550, 1986. This translation is by J. G. Adashko (first published in Soviet
Physics Uspekhi 29, 294295, 1986), and is reprinted by kind permission of the American Institute of Physics.

xi



Xii E. M. Lifshitz

Lifshitz stimulated many studies and was confirmed by experiment. It gained him the M.
V. Lomonosov Prize in 1958.

E. M. Lifshitz made a fundamental contribution in one of the most important
branches of modern physics, the theory of gravitation. His research into this field started
with a classical 1946 paper on the stability of cosmological solutions of Einstein’s theory
of gravitation. The perturbations were divided into distinctive classes—scalar, with
variation of density, vector, describing vortical motion, and finally tensor, describing
gravitational waves. This classification is still of decisive significance in the analysis of the
origin of the universe. From there, E. M. Lifshitz tackled the exceedingly difficult question
of the general character of the singularities of this theory. Many years of labor led in 1972
to a complete solution of this problem in papers written jointly with V. A. Belinskii and 1.
M. Khalatnikov, which earned their authors the 1974 L. D. Landau Prize. The singularity
was found to have a complicated oscillatory character and could be illustratively
represented as contraction of space in two directions with simultaneous expansion in the
third. The contraction and expansion alternate in time according to a definite law. These
results elicited a tremendous response from specialists, altered radically our ideas
concerning relativistic collapse, and raised a host of physical and mathematical problems
that still await solution.

His life-long occupation was the famous Landau and Lifshitz Course of Theoretical
Physics, to which he devoted about 50 years. (The first edition of Statistical Physics was
written in 1937. A new edition of Theory of Elasticity went to press shortly before his last
illness.) The greater part of the Course was written by Lifshitz together with his teacher
and friend L. D. Landau. After the automobile accident that made Landau unable to
work, Lifshitz completed the edition jointly with Landau’s students. He later continued to
revise the previously written volumes in the light of the latest advances in science. Even in
the hospital, he discussed with visiting friends the topics that should be subsequently
included in the Course.

The Course of Theoretical Physics became world famous. It was translated in its entirety
into six languages. Individual volumes were published in 10 more languages. In 1972 L. D.
Landau and E. M. Lifshitz were awarded the Lenin Prize for the volumes published by
then.

The Course of Theoretical Physics remains a monument to E. M. Lifshitz as a scientist
and a pedagogue. It has educated many generations of physicists, is being studied, and will
continue to teach students in future generations.

A versatile physicist, E. M. Lifshitz dealt also with applications. He was awarded the
USSR State Prize in 1954.

A tremendous amount of E.M. Lifshitz’s labor and energy was devoted to Soviet
scientific periodicals. From 1946 to 1949 and from 1955 to his death he was deputy editor-
in-chief of the Journal of Experimental and Theoretical Physics. His extreme devotion to
science, adherence to principles, and meticulousness greatly helped to make this journal
one of the best scientific periodicals in the world.

E. M. Lifshitz accomplished much in his life. He will remain in our memory as a
remarkable physicist and human being. His name will live forever in the history of Soviet
physics.



NOTATION

density

pressure

temperature

entropy per unit mass

internal energy per unit mass

¢+ p/p heat function (enthalpy)

¢,/c, ratio of specific heats at constant pressure and constant volume
dynamic viscosity

n/p kinematic viscosity

thermal conductivity

Kk/pc, thermometric conductivity

Reynolds number

velocity of sound

ratio of fluid velocity to velocity of sound (Mach number)

R AT T "™ NI D
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2° =

Vector and tensor (three-dimensional) suffixes are denoted by Latin letters i, k, I, . . . .

Summation over repeated (“dummy”) suffixes is everywhere implied. The unit tensor is d;; :
References to other volumes in the Course of Theoretical Physics:

Fields = Vol. 2 (The Classical Theory of Fields, fourth English edition, 1975).

QM = Vol. 3 (Quantum Mechanics, third English edition, 1977).

SP 1 = Vol. § (Statistical Physics, Part 1, third English edition, 1980).

ECM = Vol. 8 (Electrodynamics of Continuous Media, second English edition, 1984).
SP 2 = Vol. 9 (Statistical Physics, Part 2, English edition, 1980).

PK = Vol. 10 (Physical Kinetics, English edition, 1981).

All are published by Pergamon Press.
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CHAPTER I

IDEAL FLUIDS

§1. The equation of continuity

Fluid dynamics concerns itself with the study of the motion of fluids (liquids and gases).
Since the phenomena considered in fluid dynamics are macroscopic, a fluid isregarded as a
continuous medium. This means that any small volume element in the fluid is always
supposed so large that it still contains a very great number of molecules. Accordingly, when
we speak of infinitely small elements of volume, we shall always mean those which are
“physically” infinitely small, i.e. very small compared with the volume of the body under
consideration, but large compared with the distances between the molecules. The
expressions fluid particle and point in a fluid are to be understood in a similar sense. If, for
example, we speak of the displacement of some fluid particle, we mean not the
displacement of an individual molecule, but that of a volume element containing many
molecules, though still regarded as a point.

The mathematical description of the state of a moving fluid is effected by means of
functions which give the distribution of the fluid velocity v = v(x, y, z, t) and of any two
thermodynamic quantities pertaining to the fluid, for instance the pressure p(x, y, z, t) and
the density p(x, y, z, t). All the thermodynamic quantities are determined by the values of
any two of them, together with the equation of state; hence, if we are given five quantities,
namely the three components of the velocity v, the pressure p and the density p, the state of
the moving fluid is completely determined.

All these quantities are, in general, functions of the coordinates x, y, z and of the time t.
We emphasize that v(x, y, z, t) is the velocity of the fluid at a given point (x, y, z) in space
and at a given time ¢, i.e. it refers to fixed points in space and not to specific particles of the
fluid; in the course of time, the latter move about in space. The same remarks apply to
p and p.

We shall now derive the fundamental equations of fluid dynamics. Let us begin with the
equation which expresses the conservation of matter. We consider some volume V, of
space. The mass of fluid in this volume is | pdV, where p is the fluid density, and the
integration is taken over the volume V. The mass of fluid flowing in unit time through an
element df of the surface bounding this volume is pv - df; the magnitude of the vector dfis
equal to the area of the surface element, and its direction is along the normal. By
convention, we take df along the outward normal. Then pv-df is positive if the fluid is
flowing out of the volume, and negative if the flow is into the volume. The total mass of
fluid flowing out of the volume V, in unit time is therefore

§pv-df,

where the integration is taken over the whole of the closed surface surrounding the volume
in question.



2 Ideal Fluids §2

Next, the decrease per unit time in the mass of fluid in the volume ¥, can be written

0
- b—t Jp dv.
Equating the two expressions, we have
0
_ V= — .df. 1.1
3 pd §pv d (1.1)

The surface integral can be transformed by Green’s formula to a volume integral:

§pv-df= Jdiv(pv)dV.

dp .. _
J[a_t +div (pv)]d V=0.

Since this equation must hold for any volume, the integrand must vanish, 1.e.

Op/ot +div (pv) = 0. (L.2)

Thus

This is the equation of continuity. Expanding the expression div (pv), we can also write (1.2)
as

Op/ot+pdivv+v-gradp = 0. (1.3)
The vector
j=pv (1.4)

is called the mass flux density. Its direction is that of the motion of the fluid, while its
magnitude equals the mass of fluid flowing in unit time through unit area perpendicular to
the velocity.

§2. Euler’s equation

Let us consider some volume in the fluid. The total force acting on this volume is equal to

the integral
- § pdf

of the pressure, taken over the surface bounding the volume. Transforming it to a volume

integral, we have
—§pdf = — Jgradpd V.

Hence we see that the fluid surrounding any volume element d J exerts on that element a
force —dV grad p. In other words, we can say that a force — grad p acts on unit volume of
the fluid.

We can now write down the equation of motion of a volume element in the fluid by
equating the force —gradp to the product of the mass per unit volume (p) and the
acceleration dv/dt:

pdv/dt = —gradp. (2.1)



§2 Euler’s equation 3

The derivative dv/dt which appears here denotes not the rate of change of the fluid
velocity at a fixed point in space, but the rate of change of the velocity of a given fluid
particle as it moves about in space. This derivative has to be expressed in terms of
quantities referring to points fixed in space. To do so, we notice that the change dv in the
velocity of the given fluid particle during the time d¢ is composed of two parts, namely the
change during d¢ in the velocity at a point fixed in space, and the difference between
the velocities (at the same instant) at two points dr apart, where dr is the distance moved
by the given fluid particle during the time d¢. The first part is (dv/0t)dt, where the derivative
Ov/ot is taken for constant x, y, z, i.e. at the given point in space. The second part is

ov v
dxa + dyg—y + dz% = (dr - grad)v.
Thus
dv = (dv/ot)dt + (dr - grad)v,

or, dividing both sides by dt,}

dv ov
‘a = E + (V . grad)v. (22)
Substituting this in (2.1), we find
Q + (v-grad)y = — lgl'ad p. (2.3)
ot p

This is the required equation of motion of the fluid; it was first obtained by L. Euler in 1755.
It is called Euler’s equation and is one of the fundamental equations of fluid dynamics.

If the fluid is in a gravitational field, an additional force pg, where g is the acceleration
due to gravity, acts on any unit volume. This force must be added to the right-hand side of
equation (2.1), so that equation (2.3) takes the form

ov

gradp
ot +e

+ (v-grad)v = —

(2.4)

In deriving the equations of motion we have taken no account of processes of energy
dissipation, which may occur in a moving fluid in consequence of internal friction
(viscosity) in the fluid and heat exchange between different parts of it. The whole of the
discussion in this and subsequent sections of this chapter therefore holds good only for
motions of fluids in which thermal conductivity and viscosity are unimportant; such fluids
are said to be ideal.

The absence of heat exchange between different parts of the fluid (and also, of course,
between the fluid and bodies adjoining it) means that the motion is adiabatic throughout
the fluid. Thus the motion of an ideal fluid must necessarily be supposed adiabatic.

In adiabatic motion the entropy of any particle of fluid remains constant as that particle
moves about in space. Denoting by s the entropy per unit mass, we can express the
condition for adiabatic motion as

ds/dt = 0, (2.5)

t Thederivative d/d¢ thus defined is called the substantial time derivative, to emphasize its connection with the
moving substance.



4 Ideal Fluids §2

where the total derivative with respect to time denotes, as in (2.1), the rate of change of
entropy for a given fluid particle as it moves about. This condition can also be written

Os/O0t+v-grads = 0. (2.6)

This is the general equation describing adiabatic motion of an ideal fluid. Using (1.2), we
can write it as an “equation of continuity” for entropy:

0(ps)/0t +div (psv) = 0. (2.7)

The product psv is the entropy flux density.

The adiabatic equation usually takes a much simpler form. If, as usually happens, the
entropy is constant throughout the volume of the fluid at some initial instant, it retains
everywhere the same constant value at all times and for any subsequent motion of the fluid.
In this case we can write the adiabatic equation simply as

s = constant, (2.8)

and we shall usually do so in what follows. Such a motion is said to be isentropic.
We may use the fact that the motion is isentropic to put the equation of motion (2.3)ina
somewhat different form. To do so, we employ the familiar thermodynamic relation

dw=Tds+ Vdp,

where w is the heat function per unit mass of fluid (enthalpy), ¥ = 1/p is the specific
volume, and T is the temperature. Since s = constant, we have simply

dw = Vdp = dp/p,
and so (grad p)/p = gradw. Equation (2.3) can therefore be written in the form
Ov/0t + (v-grad)v = —gradw. (2.9)
It is useful to notice one further form of Euler’s equation, in which it involves only the
velocity. Using a formula well known in vector analysis,
1 gradv? = vxcurlv + (v- grad)y,

we can write (2.9) in the form

ov/ot — vxcurlv = — grad (w +1v?). (2.10)

If we take the curl of both sides of this equation, we obtain
ba—t(curl v) = curl (vXxcurlv), (2.11)

which involves only the velocity.

The equations of motion have to be supplemented by the boundary conditions that
must be satisfied at the surfaces bounding the fluid. For an ideal fluid, the boundary
condition is simply that the fluid cannot penetrate a solid surface. This means that the
component of the fluid velocity normal to the bounding surface must vanish if that surface
is at rest:

v, =0. (2.12)

In the general case of a moving surface, v, must be equal to the corresponding component
of the velocity of the surface.
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At a boundary between two immiscible fluids, the condition is that the pressure and the
velocity component normal to the surface of separation must be the same for the two
fluids, and each of these velocity components must be equal to the corresponding
component of the velocity of the surface.

As has been said at the beginning of §1, the state of a moving fluid is determined by five
quantities: the three components of the velocity v and, for example, the pressure p and the
density p. Accordingly, a complete system of equations of fluid dynamics should be five in
number. For an ideal fluid these are Euler’s equations, the equation of continuity, and the
adiabatic equation. )

PROBLEM

Write down the equations for one-dimensional motion of an ideal fluid in terms of the variables a, t, where a
(called a Lagrangian variablet) is the x coordinate of a fluid particle at some instant ¢t = ¢,.

SOLUTION. In these variables the coordinate x of any fluid particle at any instant is regarded as a function of ¢

and its coordinate a at the initial instant: x = x(a, t). The condition of conservation of mass during the motion of a
fluid element (the equation of continuity) is accordingly written p dx = p, da, or

(6x) _
p aa '_p()’

where p, (a)is a given initial density distribution. The velocity of a fluid particle is, by definition, v = (dx/dt),, and
the derivative (dv/dt), gives the rate of change of the velocity of the particle during its motion. Euler’s equation

becomes
at a po aa ',

(@s/0t), = 0.

and the adiabatic equation is

§3. Hydrostatics
For a fluid at rest in a uniform gravitational field, Euler’s equation (2.4) takes the form

gradp = pg. (3.1)

This equation describes the mechanical equilibrium of the fluid. (If there is no external
force, the equation of equilibrium s simply grad p = 0,i.e. p = constant; the pressure s the
same at every point in the fluid.)

Equation (3.1) can be integrated immediately if the density of the fluid may be supposed
constant throughout its volume, i.e. if there is no significant compression of the fluid under
the action of the external force. Taking the z-axis vertically upward, we have

op/0x = 0p/0y =0,  dp/dz= —pg.
Hence
P = — pgz +constant.

If the fluid at rest has a free surface at height h, to which an external pressure p,, the same at
every point, is applied, this surface must be the horizontal plane z = h. From the condition
p = p, for z = h, we find that the constant is p, + pgh, so that

p=po+pg(h—2). (3.2)

t Although such variables are usually called Lagrangian, the equations of motion in these coordinates were
first obtained by Euler, at the same time as equations (2.3).
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For large masses of liquid, and for a gas, the density p cannot in general be supposed
constant; this applies especially to gases (for example, the atmosphere). Let us suppose that
the fluid is not only in mechanical equilibrium but also in thermal equilibrium. Then the
temperature is the same at every point, and equation (3.1) may be integrated as follows. We
use the familiar thermodynamic relation

d® = —sdT+ Vdp,

where @ is the thermodynamic potential (Gibbs free energy) per unit mass. For constant
temperature

d® = Vdp =dp/p.

Hence we see that the expression (grad p)/p can be written in this case as grad @, so that the
equation of equilibrium (3.1) takes the form

grad® =g
For a constant vector g directed along the negative z-axis we have

g = — grad(gz).
Thus

grad (¥ +gz) =0,
whence we find that throughout the fluid
® + gz = constant; (3.3)

gz is the potential energy of unit mass of fluid in the gravitational field. The condition (3.3)
is known from statistical physics to be the condition for thermodynamic equilibrium of a
system in an external field.

We may mention here another simple consequence of equation (3.1). If a fluid (such as
the atmosphere) is in mechanical equilibrium in a gravitational field, the pressure in it can
be a function only of the altitude z (since, if the pressure were different at different points
with the same altitude, motion would result). It then follows from (3.1) that the density

1dp
=_--F 4
p gdz (34)

is also a function of z only. The pressure and density together determine the temperature,
which is therefore again a function of z only. Thus, in mechanical equilibrium in a
gravitational field, the pressure, density and temperature distributions depend only on the
altitude. If, for example, the temperature is different at different points with the same
altitude, then mechanical equilibrium is impossible.

Finally, let us derive the equation of equilibrium for a very large mass of fluid, whose
separate parts are held together by gravitational attraction—a star. Let ¢ be the
Newtonian gravitational potential of the field due to the fluid. It satisfies the differential
equation

N ¢ = 4nGp, (3.5)

where G is the Newtonian constant of gravitation. The gravitational acceleration is
—grad ¢, and the force on a mass p is — p grad ¢. The condition of equilibrium is
therefore

gradp = —pgrad ¢.
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Dividing both sides by p, taking the divergence of both sides, and using equation (3.5), we
obtain

div (%grad p) = —4nGp. (3.6)

It must be emphasized that the present discussion concerns only mechanical equilibrium;
equation (3.6) does not presuppose the existence of complete thermal equilibrium.

If the body is not rotating, it will be spherical when in equilibrium, and the density and
pressure distributions will be spherically symmetrical. Equation (3.6) in spherical polar
coordinates then takes the form

1 2
14 (’_d_l’> = —4xGp. (3.7)

§4. The condition that convection be absent

A fluid can be in mechanical equilibrium (i.e. exhibit no macroscopic motion) without
being in thermal equilibrium. Equation (3.1), the condition for mechanical equilibrium,
can be satisfied even if the temperature is not constant throughout the fluid. However, the
question then arises of the stability of such an equilibrium. It is found that the equilibrium
is stable only when a certain condition is fulfilled. Otherwise, the equilibrium is unstable,
and this leads to the appearance in the fluid of currents which tend to mix the fluid in sucha
way as to equalize the temperature. This motion is called convection. Thus the condition
for a mechanical equilibrium to be stable is the condition that convection be absent. It can
be derived as follows.

Let us consider a fluid element at height z, having a specific volume V(p, s), where pand s
are the equilibrium pressure and entropy at height z. Suppose that this fluid element
undergoes an adiabatic upward displacement through a small interval ¢; its specific volume
then becomes V(p',s), where p’ is the pressure at height z + £. For the equilibrium to be
stable, it is necessary (though not in general sufficient) that the resulting force on the
element should tend to return it to its original position. This means that the element must
be heavier than the fluid which it “displaces” in its new position. The specific volume of the
latter is V(p’,s’), where s is the equilibrium entropy at height z + £ Thus we have the
stability condition

V(ip',s)— V(p',s) > 0.

Expanding this difference in powers of s’ —s = £ds/dz, we obtain

ov\ ds
<§)pd_z > 0. 4.1)

The formulae of thermodynamics give

ovy _T(ov
Js p_cp or),’

where c,, is the specific heat at constant pressure. Both ¢, and T are positive, so that we can

write (4.1) as
av\ ds
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The majority of substances expand on heating, i.e. (0V/0T), > 0. The condition that
convection be absent then becomes

ds/dz > 0, (4.3)

i.e. the entropy must increase with height.
From this we easily find the condition that must be satisfied by the temperature gradient
dT/dz. Expanding the derivative ds/dz, we have

ds _(35) 4T, (@5\ dp _,dT _(0V\ dp
dz \oT/),dz \op)rdz Tdz \oT/,dz”~

Finally, substituting from (3.4) dp/dz = —g/V, we obtain
—dT/dz < gpT/c,, (4.4)

where p = (1/V)(0V/0T), is the thermal expansion coefficient. For a column of gas in
equilibrium which can be taken as a thermodynamically perfect gas, BT = 1 and (4.4)
becomes

—dT/dz < g/c,, 4.5)

Convection occurs if these conditions are not satisfied, i.e. if the temperature decreases
upwards with a gradient whose magnitude exceeds the value given by (4.4) and (4.5).}

§5. Bernoulli’s equation

The equations of fluid dynamics are much simplified in the case of steady flow. By steady
flow we mean one in which the velocity is constant in time at any point occupied by fluid. In
other words, vis a function of the coordinates only, so that dv/dt = 0. Equation (2.10) then

reduces to
Lgradv? —vxcurlv = —gradw. (5.1)

We now introduce the concept of streamlines. These are lines such that the tangent to a
streamline at any point gives the direction of the velocity at that point; they are determined
by the following system of differential equations:

dx dy dz

v, U,

Y (5.2)
In steady flow the streamlines do not vary with time, and coincide with the paths of the
fluid particles. In non-steady flow this coincidence no longer occurs: the tangents to the
streamlines give the directions of the velocities of fluid particles at various points in space
at a given instant, whereas the tangents to the paths give the directions of the velocities of
given fluid particles at various times.

We form the scalar product of equation (5.1) with the unit vector tangent to the
streamline at each point; this unit vector is denoted by 1. The projection of the gradient on
any direction is, as we know, the derivative in that direction. Hence the projection of grad w
is Ow/0l. The vector vxcurl vis perpendicular to v, and its projection on the direction of 11is
therefore zero.

+ For water at 20°C, the right-hand side of (4.4) is about one degree per 6.7 km; for air, the right-hand side of
(4.5) is about one degree per 100 m.
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Thus we obtain from equation (5.1)

3l 302 +w) =0.
It follows from this that 3v% + w is constant along a streamline:
1v? + w = constant. (5.3)

In general the constant takes different values for different streamlines. Equation (5.3) is
called Bernoulli’s equation.t

If the flow takes place in a gravitational field, the acceleration g due to gravity must be
added to the right-hand side of equation (5.1). Let us take the direction of gravity as the z-
axis, with z increasing upwards. Then the cosine of the angle between the directions of g
and 1 is equal to the derivative —dz/dl, so that the projection of g on 1 is

—gdz/dl
Accordingly, we now have

3 12 +w+gz)=0.
Thus Bernoulli’s equation states that along a streamline

30® +w+ gz = constant. (5.4)

§6. The energy flux

Let us choose some volume element fixed in space, and find how the energy of the fluid
contained in this volume element varies with time. The energy of unit volume of fluid is

3PV% + pe,

where the first term is the kinetic energy and the second the internal energy, ¢ being the
internal energy per unit mass. The change in this energy is given by the partial derivative

0
5,2P0° + pe)

To calculate this quantity, we write

0 1o 1 zap ov
at(zpv)—zv P AR

or, using the equation of continuity (1.2) and the equation of motion (2.3),
0
a(%pvz) = —1v2div(pv)—v-gradp—pv- (v-grad)v.

In the last term we replace v - (v- grad)v by 1v - grad v?, and grad p by p gradw — pT grad s
(using the thermodynamic relation dw = Tds + (1/p)dp), obtaining

0
E(%pvz) = —4v?div(pv)— pv-grad (3v? + w)+ pTv-grads.

t It was derived for an incompressible fluid (§10) by D. Bernoulli in 1738.
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In order to transform the derivative d(pe)/dt, we use the thermodynamic relation
de = Tds—pdV = Tds + (p/p?)dp.

Since ¢ + p/p = ¢+ pV is simply the heat function w per unit mass, we find
d(pe) = edp + pde = wdp + pTds,

and so

d(pe)  0p Os )
e w—a;+pT5; = —wdiv(pv)— pTv-grads.
Here we have also used the general adiabatic equation (2.6).

Combining the above results, we find the change in the energy to be

0
5 Gpv? +pe) = — Gv? +w)div (pv) — pv - grad Gv® + w),
or, finally,

0
=(3pv? +p8) = —div [pv(}o® +w)]. (6.1)

In order to see the meaning of this equation, let us integrate it over some volume:
a 1 2 : 1..2
E» Gpv°+pe)dV = — {div[pv(zv° +w)]dV,
or, converting the volume integral on the right into a surface integral,
a 1 2 1,2
E» (Gpv* + pe)dV = — Ppv(zv° +w)-df. (6.2)

The left-hand side is the rate of change of the energy of the fluid in some given volume.
The right-hand side is therefore the amount of energy flowing out of this volume in unit
time. Hence we see that the expression

pv (30’ +Ww) (6.3)

may be called the energy flux density vector. Its magnitude is the amount of energy passing
in unit time through unit area perpendicular to the direction of the velocity.

The expression (6.3) shows that any unit mass of fluid carries with it during its motion an
amount of energy w+4v2. The fact that the heat function w appears here, and not the
internal energy ¢, has a simple physical significance. Putting w = ¢ + p/p, we can write the
flux of energy through a closed surface in the form

—§pv(§v2 +¢) -df—§pv -df.

The first term is the energy (kinetic and internal) transported through the surface in unit
time by the mass of fluid. The second term is the work done by pressure forces on the fluid
within the surface.
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§7. The momentum flux

We shall now give a similar series of arguments for the momentum of the fluid. The
momentum of unit volume is pv. Let us determine its rate of change, d(pv)/0t. We shall use
tensor notation. We have

9 v, op
é;(pvi) =Pt U

Using the equation of continuity (1.2) in the form

ap 0(pvr)

ot 0x, ~

and Euler’s equation (2.3) in the form

ov; ov; 10p

ot~ ™ox, pox;

we obtain
8, . ou_dp_ d(pv)
FTAGUR e M M
dp
= —a:—a—z(PviUk)
We write the first term on the right in the form
9 _ 5 9P
ox;  ‘fox,’
and finally obtain
0 orl ,
“(pp,) = ——-¢ 7.1
at(pvl) axk b ( )
where the tensor I1,, is defined as
Iy = pdy + pvivy. (7.2)

This tensor is clearly symmetrical.
To see the meaning of the tensor Il ;, we integrate equation (7.1) over some volume:

9 o,
'a—t'vavldV— - J' ax" dv.

The integral on the right is transformed into a surface integral by Green’s formula:f

%fmﬂV=—§Hwk (13)

The left-hand side is the rate of change of the ith component of the momentum
contained in the volume considered. The surface integral on the right is therefore the

t Therule for transforming an integral over a closed surface into one over the volume bounded by that surface
can be formulated as follows: the surface element df; must be replaced by the operator d V'« 8/0x;, which is to be
applied to the whole of the integrand.
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amount of momentum flowing out through the bounding surface in unit time.
Consequently, I, d, is the ith component of the momentum flowing through the surface
element df. If we write df, in the form n, df, where dfis the area of the surface element, and
n is a unit vector along the outward normal, we find that IT;n, is the flux of the ith
component of momentum through unit surface area. We may notice that, according to
(7.2), 1 ,n, = pn; + pvivyn,. This expression can be written in vector form

pn+pv(v-n) (7.4)

ThusI1 ,, is the ith component of the amount of momentum flowing in unit time through
unit area perpendicular to the x,-axis. The tensor IT, is called the momentum flux density
tensor. The energy flux is determined by a vector, energy being a scalar; the momentum
flux, however, is determined by a tensor of rank two, the momentum itself being a vector.

The vector (7.4) gives the momentum flux in the direction of n, i.e. through a surface
perpendicular to n. In particular, taking the unit vector n to be directed parallel to the fluid
velocity, we find that only the longitudinal component of momentum is transported in this
direction, and its flux density is p + pv>. In a direction perpendicular to the velocity, only
the transverse component (relative to v) of momentum is transported, its flux density being
just p.

§8. The conservation of circulation

The integral

F=§v-dl,

taken along some closed contour, is called the velocity circulation round that contour.

Let us consider a closed contour drawn in the fluid at some instant. We suppose it to be a
“fluid contour”, i.e. composed of the fluid particles that lie on it. In the course of time these
particles move about, and the contour moves with them. Let us investigate what happens
to the velocity circulation. In other words, let us calculate the time derivative

d
d—t§v -dlL

We have written here the total derivative with respect to time, since we are seeking the
change in the circulation round a “fluid contour” as it moves about, and not round a
contour fixed in space.

To avoid confusion, we shall temporarily denote differentiation with respect to the
coordinates by the symbol §, retaining the symbol d for differentiation with respect to time.
Next, we notice that an element dl of the length of the contour can be written as the
difference Jr between the position vectors r of the points at the ends of the element. Thus
we write the velocity circulation as ¢ v - dr. In differentiating this integral with respect to
time, it must be borne in mind that not only the velocity but also the contour itself (i.e. its
shape) changes. Hence, on taking the time differentiation under the integral sign, we must
differentiate not only v but also Jr:

d dv dor
a—t—§v-6r = §d—t-5r + §v-a~.
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Since the velocity v is just the time derivative of the position vector r, we have
dor dr

Ve— =V+0

dt de

The integral of a total differential along a closed contour, however, is zero. The second
integral therefore vanishes, leaving

d dv
a&v-&r —%-51'.

It now remains to substitute for the acceleration dv/d: its expression from (2.9):

=v.9v = 6(3v?).

dv/dt = — grad w.

Using Stokes’ formula, we then have

dv dv) .
%’6' = § curl(d—t>! of = O,

since curl gradw = 0. Thus, going back to our previous notation, we findt
d
—@v-dl=0
de §v ’

§v -dl = constant. (8.1)

or

We have therefore reached the conclusion that, in an ideal fluid, the velocity circulation
round a closed “fluid” contour is constant in time (Kelvin’s theorem (1869) or the law of -
conservation of circulation).

It should be emphasized that this result has been obtained by using Euler’s equation in
the form (2.9), and therefore involves the assumption that the flow is isentropic. The
theorem does not hold for flows which are not isentropic.}

By applying Kelvin’s theorem to an infinitesimal closed contour 6C and transforming
the integral according to Stokes’ theorem, we get

§v-dl = J curlv-df ~ 6f - curl v = constant, (8.2)

where df is a fluid surface element spanning the contour dC. The vector curl vis often called
the  vorticity of the fluid flow at a given point. The constancy of the product (8.2) can be
intuitively interpreted as meaning that the vorticity moves with the fluid.

PROBLEM

Show that, in flow which is not isentropic, any moving particle carries with it a constant value of the product
(1/p) grad s -curlv (H. Ertel 1942).

1 This.result remains valid in a uniform gravitational field, since in that case curlg = 0.
1 Mathematically, it is necessary that there should be a one-to-one relation between p and p (which for

isentropic flow is s(p, p) = constant); then — (1/p) grad p can be written as the gradient of some function, a result
which is needed in deriving Kelvin’s theorem.
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SoLuTION. When the flow is not isentropic, the right-hand side of Euler’s equation (2.3) cannot be replaced by
—gradw, and (2.11) becomes

dw/dt = curl (vXw) + (1/p?) grad pxgrad p,

where for brevity @ = curl v. We multiply scalarly by grad s; since s = s(p, p), grad sis a linear function of grad p

and grad p, and grad s - (grad pxgrad p) = 0. The expression on the right-hand side can then be transformed as
follows:

grads-dw/dt = grads-curl (vXw)
= —div [grad sx(vXw)]
= —div [v(w-grads)] +div[w(v-grads)]
— (w-grads)divv—v-grad (w- grads)+ w - grad (v-grads).

From (2.6), v-grads = — ds/dt, and therefore
0
Y (w-grads)+ v-grad (w - grads) + (o - grads)divv = 0.

The first two terms can be combined as d(w - grad s)/dt, where d/dt = d/0t + v - grad; in the last term, we put from
(1.3) pdivv = —dp/dt. The result is

d (w -grad s) -0

de p o

which gives the required conservation law.

§9. Potential flow

From the law of conservation of circulation we can derive an important result. Let us at
first suppose that the flow is steady, and consider a streamline of which we know that curl v
is zero at some point. We draw an arbitrary infinitely small closed contour to encircle the
streamline at that point. In the course of time, this contour moves with the fluid, but always
encircles the same streamline. Since the product (8.2) must remain constant, it follows that
curl v must be zero at every point on the streamline.

Thus we reach the conclusion that, if at any point on a streamline the vorticity is zero, the
same is true at all other points on that streamline. If the flow is not steady, the same result
holds, except that instead of a streamline we must consider the path described in the course
of time by some particular fluid particle;} we recall that in non-steady flow these paths do
not in general coincide with the streamlines.

At first sight it might seem possible to base on this result the following argument. Let us
consider steady flow past some body. Let the incident flow be uniform at infinity; its
velocity v is a constant, so that curl v =0 on all streamlines. Hence we conclude that curl v
is zero along the whole of every streamline, i.e. in all space.

A flow for which curl v = 0 in all space is called a potential flow or irrotational flow, as
opposed to rotational flow, in which the curl of the velocity is not everywhere zero. Thus we
should conclude that steady flow past any body, with a uniform incident flow at infinity,
must be potential flow.

Similarly, from the law of conservation of circulation, we might argue as follows. Let us
suppose that at some instant we have potential flow throughout the volume of the fluid.
Then the velocity circulation round any closed contour in the fluid is zero.f By Kelvin’s

+ To avoid misunderstanding, we may mention here that this result has no meaning in turbulent flow. We may
also remark that a non-zero vorticity may occur on a streamline after the passage of a shock wave. We shall see
that this is because the flow is no longer isentropic (§114).

} Here we suppose for simplicity that the fluid occupies a simply-connected region of space. The same final

result would be obtained for a multiply-connected region, but restrictions on the choice of contours would have
to be made in the derivation.
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theorem, we could then conclude that this will hold at any future instant, i.e. we should find
that, if there is potential flow at some instant, then there is potential flow at all subsequent
instants (in particular, any flow for which the fluid is initially at rest must be a potential
flow). This is in accordance with the fact that, if curlv = 0, equation (2.11) is satisfied
identically.

In fact, however, all these conclusions are of only very limited validity. The reason is that
the proof given above that curl v = 0 all along a streamline is, strictly speaking, invalid for
a line which lies in the surface of a solid body past which the flow takes place, since the
presence of this surface makes it impossible to draw a closed contour in the fluid encircling
such a streamline. The equations of motion of an ideal fluid therefore admit solutions for
which separation occurs at the surface of the body: the streamlines, having followed the
surface for some distance, become separated from it at some point and continue into the
fluid. The resulting flow pattern is characterized by the presence of a “surface of tangential
discontinuity” proceeding from the body; on this surface the fluid velocity, which is
everywhere tangential to the surface, has a discontinuity. In other words, at this surface one
layer of fluid “slides” on another. Figure 1 shows a surface of discontinuity which separates
moving fluid from a region of stationary fluid behind the body. From a mathematical point
of view, the discontinuity in the tangential velocity component corresponds to a surface on
which the curl of the velocity is non-zero.

——
==

Fic. 1

When such discontinuous flows are included, the solution of the equations of motion for
an ideal fluid is not unique: besides continuous flow, they admit also an infinite number of
solutions possessing surfaces of tangential discontinuity starting from any prescribed line
on the surface of the body past which the flow takes place. It should be emphasized,
however, that none of these discontinuous solutions is physically significant, since
tangential discontinuities are absolutely unstable, and therefore the flow would in fact
become turbulent (see Chapter I11).

The actual physical problem of flow past a given body has, of course, a unique solution.
The reason is that ideal fluids do not really exist; any actual fluid has a certain viscosity,
however small. This viscosity may have practically no effect on the motion of most of the
fluid, but, no matter how small it is, it will be important in a thin layer of fluid adjoining the
body. The properties of the flow in this boundary layer decide the choice of one out of the
infinity of solutions of the equations of motion for an ideal fluid. It is found that, in the
general case of flow past bodies of arbitrary form, solutions with separation must be
taken, which in turn will result in turbulence.

In spite of what we have said above, the study of the solutions of the equations of motion
for continuous steady potential flow past bodies is in some cases meaningful. Although, in
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the general case of flow past bodies of arbitrary form, the actual flow pattern bears almost
no relation to the pattern of potential flow, for bodies of certain special (“streamlined”—
§46) shapes the flow may differ very little from potential flow; more precisely, it will be
potential flow except in a thin layer of fluid at the surface of the body and in a relatively
narrow “wake” behind the body.

Another important case of potential flow occurs for small oscillations of a body
immersed in fluid. It is easy to show that, if the amplitude a of the oscillations is small
compared with the linear dimension [ of the body (a< [), the flow past the body will be
potential flow. To show this, we estimate the order of magnitude of the various terms in
Euler’s equation

0v/0t + (v-grad)v = — gradw.

The velocity vchanges markedly (by an amount of the same order as the velocity u of the
oscillating body) over a distance of the order of the dimension [ of the body. Hence the
derivatives of v with respect to the coordinates are of the order of u/l. The order of
magnitude of v itself (at fairly small distances from the body) is determined by the
magnitude of u. Thus we have (v - grad)v ~ u?/l. The derivative dv/dt is of the order of wu,
where w is the frequency of the oscillations. Since w ~ u/a, we have dv/ot = u?/a. It now
follows from the inequality a < [ that the term (v - grad)vis small compared with dv/dt and
can be neglected, so that the equation of motion of the fluid becomes dv/d0t = — grad w.
Taking the curl of both sides, we obtain d(curlv)/dt = 0, whence curl v = constant. In
oscillatory motion, however, the time average of the velocity is zero, and therefore curl v
= constant implies that curl v = 0. Thus the motion of a fluid executing small oscillations
is potential flow to a first approximation.

We shall now obtain some general properties of potential flow. We first recall that the
derivation of the law of conservation of circulation, and therefore all its consequences,
were based on the assumption that the flow is isentropic. If the flow is not isentropic, the
law does not hold, and therefore, even if we have potential flow at some instant, the
vorticity will in general be non-zero at subsequent instants. Thus only isentropic flow can
in fact be potential flow.

In potential flow, the velocity circulation along any closed contour is zero:

§v-dl = {curlv-df =0. 9.1)

It follows from this that, in particular, closed streamlines cannot exist in potential flow.}
For, since the direction of a streamline is at every point the direction of the velocity, the
circulation along such a line can never be zero.

In rotational flow the velocity circulation is not in general zero. In this case there may be
closed streamlines, but it must be emphasized that the presence of closed streamlines is not
a necessary property of rotational flow.

Like any vector field having zero curl, the velocity in potential flow can be expressed as
the gradient of some scalar. This scalar is called the velocity potential; we shall denote it by
¢:

v = grad ¢. , 9.2)

t This result, like (9.1), may not be valid for motion in a multiply-connected region of space. In potential flow
in such a region, the velocity circulation may be non-zero if the closed contour round which it is taken cannot be
contracted to a point without crossing the boundaries of the region.
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Writing Euler’s equation in the form (2.10)
ov/ot + 4 gradv? —v x curlv = — gradw

and substituting v = grad ¢, we have

grad(aa—‘f +4v? +w) =0,

whence
op/ot+3v +w = f (1), (9.3)

where f (t)is an arbitrary function of time. This equation is a first integral of the equations
of potential flow. The function f (¢) in equation (9.3) can be put equal to zero without loss
of generality, because the potential is not uniquely defined: since the velocity is the space
derivative of ¢, we can add to ¢ any function of the time.

For steady flow we have (taking the potential ¢ to be independent of time) d¢p/0t =0,
f(¢t) = constant, and (9.3) becomes Bernoulli’s equation:

1v? + w = constant. 9.4)

It must be emphasized here that there is an important difference between the Bernoulli’s
equation for potential flow and that for other flows. In the general case, the “constant” on
the right-hand side is a constant along any given streamline, but is different for different
streamlines. In potential flow, however, it is constant throughout the fluid. This enhances
the importance of Bernoulli’s equation in the study of potential flow.

§10. Incompressible fluids

In a great many cases of the flow of liquids (and also of gases), their density may be
supposed invariable, i.e. constant throughout the volume of the fluid and throughout its
motion. In other words, there is no noticeable compression or expansion of the fluid in
such cases. We then speak of incompressible flow.

The general equations of fluid dynamics are much simplified for an incompressible fluid.
Euler’s equation, it is true, is unchanged if we put p = constant, except that p can be taken
under the gradient operator in equation (2.4):

%%+ (v-grad)v = —grad (%) +g. (10.1)
The equation of continuity, on the other hand, takes for constant p the simple form

divv =0. (10.2)

Since the density is no longer an unknown function as it was in the general case, the
fundamental system of equations in fluid dynamics for an incompressible fluid can be
taken to be equations involving the velocity only. These may be the equation of continuity
(10.2) and equation (2.11):

a%(curl v) = curl(vxcurlv). (10.3)

Bernoulli’s equation too can be written in a simpler form for an incompressible fluid.
Equation (10.1) differs from the general Euler’s equation (2.9) in that it has grad (p/p) in
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place of gradw. Hence we can write down Bernoulli’s equation immediately by simply
replacing the heat function in (5.4) by p/p:

30?2+ p/p + gz = constant. (10.4)

For an incompressible fluid, we can also write p/p in place of w in the expression (6.3) for
the energy flux, which then becomes

v (%v’ +%). (10.5)

For we have, from a well-known thermodynamic relation, the expression de = Tds —pd V'
for the change in internal energy; for s = constant and V' = 1/p = constant, de = 0,
1.e. ¢ = constant. Since constant terms in the energy do not matter, we can omit ¢ in
w = ¢+ p/p.

The equations are particularly simple for potential flow of an incompressible fluid.
Equation (10.3) is satisfied identically if curl v = 0. Equation (10.2), with the substitution
v = grad ¢, becomes

NA¢p =0, (10.6)

i.e. Laplace’s equationt for the potential ¢. This equation must be supplemented by
boundary conditions at the surfaces where the fluid meets solid bodies. At fixed solid
surfaces, the fluid velocity component v, normal to the surface must be zero, whilst for
moving surfaces it must be equal to the normal component of the velocity of the surface (a
given function of time). The velocity v,, however, is equal to the normal derivative of the
potential ¢: v, = 0¢/0n. Thus the general boundary conditions are that d¢/dn is a given
function of coordinates and time at the boundaries.

For potential flow, the velocity is related to the pressure by equation (9.3). In an
incompressible fluid, we can replace w in this equation by p/p:

0p/ot+1v2 +p/p = f(b). (10.7)

We may notice here the following important property of potential flow of an
incompressible fluid. Suppose that some solid body is moving through the fluid. If the
result is potential flow, it depends at any instant only on the velocity of the moving body at
that instant, and not, for example, on its acceleration. For equation (10.6) does not
explicitly contain the time, which enters the solution only through the boundary
conditions, and these contain only the velocity of the moving body.

From Bernoulli’s equation, v + p/p = constant, we see that, in steady flow of an
incompressible fluid (not in a gravitational field), the greatest pressure occurs at points
where the velocity is zero. Such a point usually occurs on the surface of a body past which
the fluid is moving (at the point O in Fig. 2), and is called a stagnation point. If u is the
velocity of the incident current (i.e. the fluid velocity at infinity), and p, the pressure at
infinity, the pressure at the stagnation point is

Pmax = Po +3pu’. (10.8)

If the velocity distribution in a moving fluid depends on only two coordinates (x and y,
say), and the velocity is everywhere parallel to the xy-plane, the flow is said to be two-

1 The velocity potential was first introduced by Euler, who obtained an equation of the form (10.6) for it; this
form later became known as Laplace’s equation.
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dimensional or plane flow. To solve problems of two-dimensional flow of an incompressible
fluid, it is sometimes convenient to express the velocity in terms of what is called the stream
function. From the equation of continuity divv = dv,/0x + 0v,/dy = 0 we see that the
velocity components can be written as the derivatives

b= 0Y/dy, v, = —0P/ox (10.9)

of some function ¥(x, y), called the stream function. The equation of continuity is then
satisfied automatically. The equation that must be satisfied by the stream function is
obtained by substituting (10.9) in equation (10.3). We then obtain

d oy 0 o ..
SOV Fes B+ Au =0, (10.10)

If we know the stream function we can immediately determine the form of the streamlines
for steady flow. For the differential equation of the streamlines (in two-dimensional flow)
is dx/v, = dy/v, or v,dx — v, dy = 0; it expresses the fact that the direction of the tangent
to a streamline is the direction of the velocity. Substituting (10.9), we have

0

%dx+€y—dy =dy =0,
whence y = constant. Thus the streamlines are the family of curves obtained by putting
the stream function ¥(x, y) equal to an arbitrary constant.

If we draw a curve between two points A and B in the xy-plane, the mass flux Q across
this curve is given by the difference in the values of the stream function at these two points,
regardless of the shape of the curve. For, if v, is the component of the velocity normal to the
curve at any point, we have

B B B
Q = p$ Undl = p§ (—vydx+vxdy) = dew,
or
Q=pWs—V¥.)- (10.11)

There are powerful methods of solving problems of two-dimensional potential flow of
an incompressible fluid past bodies of various profiles, involving the application of the

FM-B
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theory of functions of a complex variable.} The basis of these methods is as follows. The
potential and the stream function are related to the velocity components by}

v, = 8¢p/dx = 8Y/dy, v, = d/dy = — OY/ox.

These relations between the derivatives of ¢ and y, however, are the same, mathematically,
as the well-known Cauchy-Riemann conditions for a complex expression

w=¢+iy (10.12)

to be an analytic function of the complex argument z = x +iy. This means that the
function w(z) has at every point a well-defined derivative

dw d¢ oy

T it —p —iv. 10.13

dz 0Ox +lax Ux =ty ( )
The function w is called the complex potential, and dw/dz the complex velocity. The
modulus and argument of the latter give the magnitude v of the velocity and the angle 6
between the direction of the velocity and that of the x-axis:

dw/dz = ve™". (10.14)

At a solid surface past which the flow takes place, the velocity must be along the tangent.
That is, the profile contour of the surface must be a streamline, i.e. Y = constant along it;
the constant may be taken as zero, and then the problem of flow past a given contour
reduces to the determination of an analytic function w(z) which takes real values on the
contour. The statement of the problem is more involved when the fluid has a free surface;
an example is found in Problem 9.

The integral of an analytic function round any closed contour C is well known to be
equal to 2zi times the sum of the residues of the function at its simple poles inside C; hence

éw’dz = 2mi ) A,
k

where A, are the residues of the complex velocity. We also have

§w’ dz = §(vx —iv,)(dx +idy)

= §(vxdx +v,dy) + i§(vxdy —v,dx).
The real part of this expression is just the velocity circulation I round the contour C. The

imaginary part, multiplied by p, is the mass flux across C; if there are no sources of fluid
within the contour, this flux is zero and we then have simply

r=2niy A; (10.15)
k

all the residues A, are in this case purely imaginary.

+ A more detailed account of these methods and their numerous applications may be found in many books
which treat fluid dynamics from a more mathematical standpoint. Here, we shall describe only the basic idea.

1 The existence of the stream function depends, however, only on the flow’s being two-dimensional, not
necessarily a potential flow.
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Finally, let us consider the conditions under which the fluid may be regarded as
incompressible. When the pressure changes adiabatically by Ap, the density changes by
Ap = (0p/dp),Ap. According to Bernoulli’s equation, however, Ap is of the order of pv* in
steady flow. We shall show in §64 that the derivative (0p/dp), is the square of the velocity ¢
of sound in the fluid, so that Ap ~ pv?/c?. The fluid may be regarded as incompressible if
Ap/p < 1. We see that a necessary condition for this is that the fluid velocity be small
compared with that of sound:

v<c. (10.16)

However, this condition is sufficient only in steady flow. In non-steady flow, a further
condition must be fulfilled. Let t and [ be a time and a length of the order of the times and
distances over which the fluid velocity undergoes significant changes. If the terms dv/0t
and (1/p) grad p in Euler’s equation are comparable, we find, in order of magnitude, v/t
~ Ap/lp or Ap ~ lpv/t, and the corresponding change in p is Ap ~ lpv/tc?®. Now
comparing the terms dp/dt and pdivyv in the equation of continuity, we find that the
derivative dp/0t may be neglected (i.e. we may suppose p constant) if Ap/t < pv/|, or

> l/c. (10.17)

If the conditions (10.16) and (10.17) are both fulfilled, the fluid may be regarded as
incompressible. The condition (10.17) has an obvious meaning: the time //c taken by a
sound signal to traverse the distance | must be small compared with the time t during
which the flow changes appreciably, so that the propagation of interactions in the fluid
may be regarded as instantaneous.

PROBLEMS
PrROBLEM 1. Determine the shape of the surface of an incompressible fluid subject to a gravitational field,
contained in a cylindrical vessel which rotates about its (vertical) axis with a constant angular velocity Q.
SOLUTION. Let us take the axis of the cylinder as the z-axis. Then v, = — yQ, v, = xQ, v, = 0. The equation of
continuity is satisfied identically, and Euler’s equation (10.1) gives
2 1o 10p

10p
0 =——, , —=—+g=0.
* p Ox poy p oz Té
The general integral of these equations is
p/p = 1Q*(x* + y?)— gz + constant.
At the free surface p = constant, so that the surface is a paraboloid:
z=3Q%(x*+y%)/g,
the origin being taken at the lowest point of the surface.
PROBLEM 2. A sphere, with radius R, moves with velocity u in an incompressible ideal fluid. Determine the

potential flow of the fluid past the sphere.

SoLuTioN. The fluid velocity must vanish at infinity. The solutions of Laplace’s equation A¢ =0
which vanish at infinity are well known to be 1/r and the derivatives, of various orders, of 1/r with respect to the
coordinates (the origin is taken at the centre of the sphere). On account of the complete symmetry of the sphere,
only one constant vector, the velocity u, can appear in the solution, and, on account of the linearity of both
Laplace’s equation and the boundary condition, ¢ must involve u linearly. The only scalar which can be formed
from u and the derivatives of 1/r is the scalar product u-grad(1/r). We therefore seck ¢ in the form

¢=A-grad(1/r) = — (A-m)/r?,

where n is a unit vector in the direction of r. The constant A is determined from the condition that the normal
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components of the velocities v and u must be equal at the surface at the sphere, i.c. v-n = u-n for r = R. This
condition gives A = $uR>3, so that
R3? R3
o= —Er—zlrn, v=§F[3n(n’n)—n].
The pressure distribution is given by equation (10.7):
P = po — 3pv* — pdd/ot,

where p, is the pressure at infinity. To calculate the derivative d¢/dt, we must bear in mind that the origin (which
we have taken at the centre of the sphere) moves with velocity u. Hence

0¢/0t = (0p/0u)-a—u-grad ¢.
The pressure distribution over the surface of the sphere is given by the formula
p = po +3pu’(9cos’ 6 —5) +3pRn-du/dt,

where 0 is the angle between n and u.

PROBLEM 3. The same as Problem 2, but for an infinite cylinder moving perpendicular to its axis.}

SoLuTioN. The flow is independent of the axial coordinate, so that we have to solve Laplace’s equation in two
dimensions. The solutions which vanish at infinity are the first and higher derivatives of log r with respect to the
coordinates, where r is the radius vector perpendicular to the axis of the cylinder. We seek a solution in the form

¢ =A-gradlogr=A-n/r,
and from the boundary conditions we obtain A = — R?u, so that

2 RZ
¢=—Tu-n, v=—[2n(u-n)—u].
r
The pressure at the surface of the cylinder is given by
p = po +3pu*(dcos’*0—3)+ pRn-du/dr.
PROBLEM 4. Determine the potential flow of an incompressible ideal fluid in an ellipsoidal vessel rotating
about a principal axis with angular velocity Q, and determine the total angular momentum of the fluid.

SoLUTION. We take Cartesian coordinates x, y, z along the axes of the ellipsoid at a given instant, the z-axis
being the axis of rotation. The velocity of points in the vessel wall is

u=Qxr,
so that the boundary condition v, = d¢/0n = u, is
0/0n = Q(xn, — yn,),
or, using the equation of the ellipsoid x2/a* + y?/b> + 2% /c* = 1,
x0p yop z0¢ 1 1
Zax oy T e "YQ(P ‘:ﬁ)-
The solution of Laplace’s equation which satisfies this boundary condition is
a*-b?
¢ = Qm xy. (1)

The angular momentum of the fluid in the vessel is

M=p j(xv,. —yv,)dVb.

t The solution of the more general problems of potential flow past an ellipsoid and an elliptical cylinder may
be found in: N. E. Kochin, I. A. Kibel’ and N. V. Roze, Theoretical Hydromechanics (Teoreticheskaya
gidromekhanika), Part 1, chapter VII, Moscow 1963; H. Lamb, Hydrodynamics, 6th ed., §§103-116, Cambridge
1932.
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Integrating over the volume V of the ellipsoid, we have

Q V 2 __ bZ 2
Yl Gl
5 a*+b?

Formula (1) gives the absolute motion of the fluid relative to the instantaneous position of the axes x, y, z which
are fixed to the rotating vessel. The motion relative to the vessel (i.e. relative to a rotating system of coordinates
x, ¥, z) is found by subtracting the velocity QXr from the absolute velocity; denoting the relative velocity of the
fluid by v’, we have
o9 2Qa? 2Qb?

vV, =—+yQ=—y, v, = ———X, v, =0.

ox VT a2t ¥ a* +b?
The paths of the relative motion are found by integrating the equations X = /,, y = v/, and are the ellipses
x2/a* + y*/b* = constant, which are similar to the boundary ellipse.

PrOBLEM 5. Determine the flow near a stagnation point (Fig. 2).

SOLUTION. A small part of the surface of the body near the stagnation point may be regarded as plane. Let us
take it as the xy-plane. Expanding ¢ for x, y, z small, we have as far as the second-order terms

¢ = ax+by+cz+ Ax* + By* + Cz* + Dxy + Eyz + Fzx;

a constant term in ¢ is immaterial. The constant coefficients are determined so that ¢ satisfies the equation A ¢
= 0 and the boundary conditions v, = d¢/0z = 0for z=0and all x, y, 0¢/0x = d¢p/dy =0forx =y =2=0
(the stagnation point). Thisgivesa=b =¢c=0;C = — 4— B, E = F = 0. The term Dxy can always be removed
by an appropriate rotation of the x and y axes. We then have

¢ = Ax* + By?* — (A + B)z?. (1)

If the flow is axially symmetrical about the z-axis (symmetrical flow past a solid of revolution), we must have
A = B, so that

¢ = A(*+y*—22%).

The velocity components are v, = 24x,v, = 24y,v, = — 4Az. The streamlines are given by equations (5.2), from
which we find x%z = ¢,, y’z = ¢,, i.. the streamlines are cubical hyperbolae.

If the flow is uniform in the y-direction (e.g. flow in the z-direction past a cylinder with its axis in the y-
direction), we must have B = 0 in (1), so that

¢ = A(x2-12%.
The streamlines are the hyperbolae xz = constant.

PROBLEM 6. Determine the potential flow near an angle formed by two intersecting planes.

SOLUTION. Let us take polar coordinates r, @ in the cross-sectional plane (perpendicular to the line of
intersection), with the origin at the vertex of the angle; 8 is measured from one of the arms of the angle. Let the
angle be « radians; for « < n the flow takes place within the angle, for « > = outside it. The boundary con-
dition that the normal velocity component vanish means that d¢/06 = 0 for 6 = 0 and 6 = «. The solution of
Laplace’s equation satisfying these conditions can be writtent

¢ = Ar"cosné, n=nmnja,
so that
v, =nAr~'cosnd, v,= —nAr""'sinné.

For n < 1 (flow outside an angle; Fig. 3), v, becomes infinite as 1/7' " at the origin. For n > 1 (flow inside an angle;
Fig. 4), v becomes zero for r = 0.

The stream function, which gives the form of the streamlines, is = Ar”sin nf. The expressions obtained for ¢
and y are the real and imaginary parts of the complex potential w = 4z".1

PROBLEM 7. A spherical hole with radius a is suddenly formed in an incompressible fluid filling all space.
Determine the time taken for the hole to be filled with fluid (Besant 1859; Rayleigh 1917).

1t We take the solution which involves the lowest positive power of r, since r is small.

1 If the boundary planes are supposed infinite, Problems 5 and 6 involve degeneracy, in that the values of the
constants 4 and Bin the solutions are indeterminate. In actual cases of flow past finite bodies, they are determined
by the general conditions of the problem.
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SoLuTION. The flow after the formation of the hole will be spherically symmetrical, the velocity at every point
being directed to the centre of the hole. For the radial velocity v, = v < 0 we have Euler’s equation in spherical
polar coordinates:

—+v = ———. (1)

The equation of continuity gives
riv = F(t), 2

where F (t) is an arbitrary function of time; this equation expresses the fact that, since the fluid is incompressible,
the volume flowing through any spherical surface is independent of the radius of that surface.

A

FiG. 3
«
NS \ AN
FiG. 4
Substituting v from (2) in (1), we have
F'(ty ov _ 1 op

to—=———.
r? or por
Integrating this equation over r from the instantaneous radius R = R(t) < a of the hole to infinity, we obtain
F'(y)

. Po
Ty 0 3
R 2 ()

where V' = dR(t)/dt is the rate of change of the radius of the hole, and p, is the pressure at infinity; the fluid
velocity at infinity is zero, and so is the pressure at the surface of the hole. From equation (2) for points on the
surface of the hole we find

Fy=R*0) V),
and, substituting this expression for F(t) in (3), we obtain the equation
3p? _leVZ _Po
2 - .
2 dR p

4
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The variables are separable; integrating with the boundary condition V' = 0 for R = a (the fluid being initially at

rest), we have
N ECah)
de 3p \R?

Hence we have for the required total time for the hole to be filled

Ry -
SN2, ) Vl@R -1

This integral reduces to a beta function, and we have finally
3a’pn (5
t=/:uEJJQ=OMMJMN
2p, T(1/3) Po

PROBLEM 8. A sphere immersed in an incompressible fluid expands according to a given law R = R(t).
Determine the fluid pressure at the surface of the sphere.

SOLUTION. Let the required pressure be P(t). Calculations exactly similar to those of Problem 7, except that
the pressure at r = R is P(t) and not zero, give instead of (3) the equation

_f_'(‘l 1V2=p_°_£(_t)

R@ ° PP
and accordingly instead of (4) the equation
- 3p? dv
Po— P(9) =-___ _RV—.
p 2 dR

Bearing in mind the fact that V = dR/dt, we can write the expression for P(t) in the form

d?(R? dR \?
P(l)=Po+%P[ (i(tz‘)'*'(?) ]

PrROBLEM 9. Determine the form of a jet emerging from an infinitely long slit in a plane wall.

SOLUTION. Let the wall be along the x-axis in the xy-plane, and the aperture be the segment —3a < x < }aof
that axis, the fluid occupying the half-plane y > 0. Far from the wall (y — oo) the fluid velocity is zero, and the
pressure is p, , say.

At the free surface of the jet (BC and B'C’ in Fig. 5a) the pressure p = 0, while the velocity takes the constant
value v, = ./ (2po/p), by Bernoulli’s equation. The wall lines are streamlines, and continue into the free boundary
of the jet. Let  be zero on the line ABC; then, ontheline A'B'C’,yy = — Q/p,where Q = pa, v, is the rate at which
the fluid emerges in the jet (a,, v, being the jet width and velocity at infinity). The potential ¢ varies from — oo to
+ oo both along ABC and along A'B'C’; let ¢ be zero at Band B'. Then, in the plane of the complex variable w, the
region of flow is an infinite strip of width Q/p (Fig. 5b). (The points in Fig. 5b, ¢, d are named to correspond with
those in Fig. 5a.)

We introduce a new complex variable, the logarithm of the complex velocity:

1 dw vy .
¢ log[v1 i dz] log~ +i(n+0) (1)
here v, A is the complex velocity of the jet at infinity. On A'B’ we have 6 = 0; on AB, 6 = —r; on BC and
BC', v = v;, while at infinity in the jet 6 = — 1. In the plane of the complex variable {, therefore, the region of
flow is a semi-infinite strip of width = in the right half-plane (Fig. 5¢). If we can now find a conformal
transformation which carries the strip in the w-plane into the half-strip in the {-plane (with the points
corresponding as in Fig. 5), we shall have determined w as a function of dw/dz, and w can then be found by a
simple quadrature.

In order to find the desired transformation, we introduce one further auxiliary complex variable, u, such that
the region of flow in the u-plane is the upper half-plane, the points Band B’ correspondingtou = #+ 1, the points
Cand C’ to u = 0, and the infinitely distant points A and 4’ tou = + oo (Fig. 5d). The dependence of w on this
auxiliary variable is given by the conformal transformation which carries the upper half of the u-plane into the
strip in the w-plane. With the above correspondence of points, this transformation is

w= — g log u. )
pr

FM-B*
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In order to find the dependence of { on u, we have to find a conformal transformation of the half-strip in the {-
plane into the upper half of the u-plane. Regarding this half-strip as a triangle with one vertex at infinity, we can
find the desired transformation by means of the well-known Schwarz—Christoffel formula; it is

{=—isin"'u 3)

Formulae (2) and (3) give the solution of the problem, since they furnish the dependence of dw/dz on w in
parametric form.

Let us now determine the form of the jet. On BC we havew = ¢, { = i(3n + 6), while u varies from 1 to 0. From
(2) and (3) we obtain

= — —Q— log (—cos0), “4)
pn

and from (1) we have
d¢/dz =v,e” ¥,

or
. l i0 al i0
dz=dx+idy=—¢€"d¢ =—n—e‘ tan0do,
vy

whence we find, by integration with the conditions y = 0, x = 1a for 6 = —x, the form of the jet, expressed
parametrically. In particular, the compression of the jet is a,/a = /(2 + n) = 0-61.

§11. The drag force in potential flow past a body

Let us consider the problem of potential flow of an incompressible ideal fluid past some
solid body. This problem is, of course, completely equivalent to that of the motion of a
fluid when the same body moves through it. To obtain the latter case from the former, we
need only change to a system of coordinates in which the fluid is at rest at infinity. We shall,
in fact, say in what follows that the body is moving through the fluid.

Let us determine the nature of the fluid velocity distribution at great distances from the
moving body. The potential flow of an incompressible fluid satisfies Laplace’s equation,
A ¢ = 0. We have to consider solutions of this equation which vanish at infinity, since the
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fluid is at rest there. We take the origin somewhere inside the moving body; the coordinate
system moves with the body, but we shall consider the fluid velocity distribution at a
particular instant. As we know, Laplace’s equation has a solution 1/r, where r is the
distance from the origin. The gradient and higher space derivatives of 1/r are also
solutions. All these solutions, and any linear combination of them, vanish at infinity. Hence
the general form of the required solution of Laplace’s equation at great distances from the
body is

1
= -2 A-grad—+ ...,
r r

where a and A are independent of the coordinates; the omitted terms contain higher-order
derivatives of 1/r. It is easy to see that the constant a must be zero. For the potential
¢ = —a/r gives a velocity

v= —grad(a/r) = ar/r’.

Let us calculate the corresponding mass flux through some closed surface, say a sphere
with radius R. On this surface the velocity is constant and equal to a/R?; the total flux
through it is therefore p(a/R?)4nR? = 4npa. But the flux of an incompressible fluid
through any closed surface must, of course, be zero. Hence we conclude that a = 0.

Thus ¢ contains terms of order 1/r? and higher. Since we are seeking the velocity at large
distances, the terms of higher order may be neglected, and we have

¢ =A-grad(1/r)= —A-n/r?, (11.1)
and the velocity v = grad ¢ is

V= (A-grad)grad%:g’(A.l:gn—A, (11.2)

where n is a unit vector in the direction of r. We see that at large distances the velocity
diminishes as 1/r>. The vector A depends on the actual shape and velocity of the body, and
can be determined only by solving completely the equation A ¢ = 0 at all distances, taking
into account the appropriate boundary conditions at the surface of the moving body.

The vector A which appears in (11.2) is related in a definite manner to the total
momentum and energy of the fluid in its motion past the body. The total kinetic energy of
the fluid (the internal energy of an incompressible fluid is constant) is E = 4 | pp>dV, where
the integration is taken over all space outside the body. We take a region of space V'
bounded by a sphere with large radius R, whose centre is at the origin, and first integrate
only over V| later letting R tend to infinity. We have identically

jvde = juzdl/+f(v+u)-(v—u)dl/,

where u is the velocity of the body. Since u is independent of the coordinates, the first
integral on the right is simply u?( V' — V;), where F; is the volume of the body. In the
second integral, we write the sum v+ u as grad (¢ + u-r); using the facts that divv =0
(equation of continuity) and divu = 0, we have

J‘deV =u(V— Vo)+Jdiv[(¢+u-r)(v—u)]dV.
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The second integral is now transformed into an integral over the surface S of the sphere
and the surface S, of the body:

Jvde'= w2 (V—y—ry+ § (¢ +u-r)(v—u)-df.
S+S,

On the surface of the body, the normal components of v and u are equal by virtue of the
boundary conditions; since the vector df is along the normal to the surface, it is clear that
the integral over S, vanishes identically. On the remote surface S we substitute the
expressions (11.1), (11.2) for ¢ and v, and neglect terms which vanishas R — co. Writing the
surface element on the sphere S in the form df = nR?do, where do is an element of solid
angle, we obtain

J‘vz dV = u*GnR3-V,y)+ J[3(A -n)(u-n)— (u-n)>R*]do.

Finally, effecting the integrationf and multiplying by 3p, we obtain the following
expression for the total energy of the fluid:

E =}p(nA -u—Vyu?) (11.3)

As has been mentioned already, the exact calculation of the vector A requires a complete
solution of the equation A ¢ = 0, taking into account the particular boundary conditions
at the surface of the body. However, the general nature of the dependence of A on the
velocity u of the body can be found directly from the facts that the equation is linear in ¢,
and the boundary conditions are linear in both ¢ and u. It follows from this that A must be
a linear function of the components of u. The energy E given by formula (11.3)is therefore
a quadratic function of the components of u, and can be written in the form

E = %mikuiuk, (11.4)

where m;, is some ¢onstant symmetrical tensor, whose components can be calculated from
those of A; it is called the induced-mass tensor.

Knowing the energy E, we can obtain an expression for the total momentum P of the
fluid. To do so, we notice that infinitesimal changes in E and P are related by dE = u-dP,

t The integration over o is equivalent to averaging the integrand over all directions of the vector m and
multiplying by 4. To average expressions of the type (A -n) (B-n) = A4;n,B,n,, where A, B are constant vectors,
we notice that

(A—'“)(B'n) = Ain”i_"l: =10,4,B, =1A-B.

1 For, let the body be accelerated by some external force F. The momentum of the fluid will thereby be
increased; let it increase by dP during a time dt. This increase is related to the force by dP = Fdt, and on scalar
multiplication by the velocity u we have u-dP = F-udt, i.e. the work done by the force F acting through the
distance udt, which in turn must be equal to the increase dE in the energy of the fluid.

It should be noticed that it would not be possible to calculate the momentum directly as the integral pvd}’
over the whole volume of the fluid. The reason is that this integral, with the velocity v distributed in accordance
with (11.2), diverges, in the sense that the result of the integration, though finite, depends on how the integral is
taken: on effecting the integration over a large region, whose dimensions subsequently tend to infinity, we obtain
a value depending on the shape of the region (sphere, cylinder, etc.). The method of calculating the momentum
which we use here, starting from the relation u-dP = dE, leads to a completely definite final result, given by
formula (11.6), which certainly satisfies the physical relation between the rate of change of the momentum and the
forces acting on the body.
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it follows from this that, if E is expressed in the form (11.4), the components of P must be
P, = myu,. (11.5)

Finally, a comparison of formulae (11.3), (11.4) and (11.5) shows that P is given in terms of
A by
P = 4npA —pV,u. (11.6)

It must be noticed that the total momentum of the fluid is a perfectly definite finite
quantity.

The momentum transmitted to the fluid by the body in unit time is dP/dt¢. With the
opposite sign it evidently gives the reaction F of the fluid, i.e. the force acting on the body:

F = —dP/dt. (11.7)

The component of F parallel to the velocity of the body is called the drag force, and the
perpendicular component is called the lift force.

If it were possible to have potential flow past a body moving uniformly in an ideal fluid,
we should have P = constant, since u = constant, and so F = 0. That is, there would be no
drag and no lift; the pressure forces exerted on the body by the fluid would balance out (a
result known as d’Alembert’s paradox). The origin of this paradox is most clearly seen by
considering the drag. The presence of a drag force in uniform motion of a body would
mean that, to maintain the motion, work must be continually done by some external force,
this work being either dissipated in the fluid or converted into kinetic energy of the fluid,
and the result being a continual flow of energy to infinity in the fluid. There is, however, by
definition no dissipation of energy in an ideal fluid, and the velocity of the fluid set in
motion by the body diminishes so rapidly with increasing distance from the body that
there can be no flow of energy to infinity.

However, it must be emphasized that all these arguments relate only to the motion of a
body in an infinite volume of fluid. If, for example, the fluid has a free surface, a body
moving uniformly parallel to this surface will experience a drag. The appearance of this
force (called wave drag) is due to the occurrence of a system of waves propagated on the
free surface, which continually remove energy to infinity.

Suppose that a body is executing an oscillatory motion under the action of an external
force f. When the conditions discussed in §10 are fulfilled, the fluid surrounding the body
moves in a potential flow, and we can use the relations previously obtained to derive the
equations of motion of the body. The force f must be equal to the time derivative of the
total momentum of the system, and the total momentum is the sum of the momentum Mu
of the body (M being the mass of the body) and the momentum P of the fluid:

Mdu/dt +dP/dt = f.
Using (11.5), we then obtain
M du;/dt +m, du, /dt = £,
which can also be written

di
de

This is the equation of motion of a body immersed in an ideal fluid.

(Méik'*‘mik) =ﬁ. (11.8)
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Let us now consider what is in some ways the converse problem. Suppose that the fluid
executes some oscillatory motion on account of some cause external to the body. This
motion will set the body in motion also.t We shall derive the equation of motion of the
body.

We assume that the velocity of the fluid varies only slightly over distances of the order of
the dimension of the body. Let v be what the fluid velocity at the position of the body
would be if the body were absent; that is, v is the velocity of the unperturbed flow.
According to the above assumption, v may be supposed constant throughout the volume
occupied by the body. We denote the velocity of the body by u as before.

The force which acts on the body and sets it in motion can be determined as follows. If
the body were wholly carried along with the fluid (i.e.if v = u), the force acting on it would
be the same as the force which would act on the liquid in the same volume if the body were
absent. The momentum of this volume of fluid is pV,v, and therefore the force on it is
p¥, dv/dt. Inreality, however, the body is not wholly carried along with the fluid; thereis a
motion of the body relative to the fluid, in consequence of which the fluid itself acquires
some additional motion. The resulting additional momentum of the fluid is m;, (u, — v,),
since in (11.5) we must now replace u by the velocity u — v of the body relative to the fluid.
Thechangein this momentum with time results in the appearance of an additional reaction
force on the body of —m; d(u, —v,)/dt. Thus the total force on the body is

. dv, d
P VOE{ - mika—t'(uk —Uy)-

This force is to be equated to the time derivative of the body momentum. Thus we obtain
the following equation of motion:

d . dy; d
a(M“i) = ona—mma(“k —U)-

Integrating both sides with respect to time, we have
(M + my)u, = (my+ pVody )0y (1L.9)

We put the constant of integration equal to zero, since the velocity u of the body in its
motion caused by the fluid must vanish when v vanishes. The relation obtained determines
the velocity of the body from that of the fluid. If the density of the body is equal to that of
the fluid (M = p¥,), we have u = v, as we should expect.

PROBLEMS

PrOBLEM 1. Obtain the equation of motion for a sphere executing an oscillatory motion in an ideal fluid, and
for a sphere set in motion by an oscillating fluid.

SoLutioN. Comparing (11.1) with the expression for ¢ for flow past a sphere obtained in §10, Problem 2, we
see that '

A =4R3g,

where R is the radius of the sphere. The total momentum transmitted to the fluid by the sphere is, according to
(11.6), P = 3npR>u, so that the tensor m, is

_2 3
my = 3npR>4,.

t For example, we may be considering the motion of a body in a fluid through which a sound wave is
propagated, the wavelength being large compared with the dimension of the body.
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The drag on the moving sphere is
F = —%npR3du/dt,

and the equation of motion of the sphere oscillating in the fluid is
du
$nR*(po +%P)‘a =f,

where p, is the density of the sphere. The coefficient of du/dt is the virtual mass of the sphere; it consists of the
actual mass of the sphere and the induced mass, which in this case is half the mass of the fluid displaced by the
sphere.

If the sphere is set in motion by the fluid, we have for its velocity, from (11.9),

3
u=
P+2po

If the density of the sphere exceeds that of the fluid (p, > p), u < v,i.e. the sphere “lags behind” the fluid; if p, < p,
on the other hand, the sphere “goes ahead”.

V.

PROBLEM 2. Express the moment of the forces acting on a body moving in a fluid in terms of the vector A.

SoLUTION. As we know from mechanics, the moment M of the forces acting on a body is determined from its
Lagrangian function (in this case, the energy E) by the relation 6E = M-460, where 40 is the vector of an
infinitesimal rotation of the body, and JE is the resulting change in E. Instead of rotating the body through an
angle 60 (and correspondingly changing the components m;, ), we may rotate the fluid through an angle —40
relative to the body (and correspondingly change the velocity u). We have u = —340xu, so that

O0E=P-6u= —66-uxP.
Using the expression (11.6) for P, we then obtain the required formula:

M = —uXxP = 4npAxu

§12. Gravity waves

The free surface of a liquid in equilibrium in a gravitational field is a plane. If, under the
action of some external perturbation, the surface is moved from its equilibrium position at
some point, motion will occur in the liquid. This motion will be propagated over the whole
surface in the form of waves, which are called gravity waves, since they are due to the action
of the gravitational field. Gravity waves appear mainly on the surface of the liquid; they
affect the interior also, but less and less at greater and greater depths.

We shall here consider gravity waves in which the velocity of the moving fluid particles is
so small that we may neglect the term (v-grad)v in comparison with dv/0t in Euler’s
equation. The physical significance of this is easily seen. During a time interval of the order
of the period 7 of the oscillations of the fluid particles in the wave, these particles travel a
distance of the order of the amplitude a of the wave. Their velocity v is therefore of the order
of a/z. It varies noticeably over time intervals of the order of T and distances of the order of
A in the direction of propagation (where 4 is the wavelength). Hence the time derivative of
the velocity is of the order of v/, and the space derivatives are of the order of v/A. Thus the
condition (v-grad)v < dv/0t is equivalent to

1a2<al
—_— — <.—-'—
AN T 1

a<Ai, (12.1)

i.e. the amplitude of the oscillations in the wave must be small compared with the
wavelength. We have seen in §9 that, if the term (v - grad)v in the equation of motion may

or
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be neglected, we have potential flow. Assuming the fluid incompressible, we can therefore
use equations (10.6) and (10.7). The term $v? in the latter equation may be neglected, since
it contains the square of the velocity; putting f(¢) = 0 and including a term pgz on account
of the gravitational field, we obtain

= —pgz— pog/ot. (12.2)
We take the z-axis vertically upwards, as usual, and the xy-plane in the equilibrium surface
of the liquid.

Let us denote by { the z coordinate of a point on the surface; { is a function of x, y and ¢.
In equilibrium { =0, so that { gives the vertical displacement of the surface in its
oscillations. Let a constant pressure p, act on the surface. Then we have at the surface, by
(12.2),

Po = —pgl —pog/ot.

The constant p, can be eliminated by redefining the potential ¢, adding to it a quantity
Pot/p independent of the coordinates. We then obtain the condition at the surface as

9L +(09/01), - =0, (123)

Since the amplitude of the wave oscillations is small, the displacement { is small. Hence we
can suppose, to the same degree of approximation, that the vertical component of the
velocity of points on the surface is simply the time derivative of {:

v, = 0(/0t.
But v, = 0¢/0z, so that

10%¢
0¢/02), ., = 0(/0t = —| —— .
@/0z), - = oL/ (gatz)ﬁc
Since the oscillations are small, we can take the value of the derivatives at z = 0 instead
of z = {. Thus we have finally the following system of equations to determine the motion in
a gravitational field:

Ag=0, (12.4)
op 1%\
(E’“L;E?), -0 (12.5)

We shall here consider waves on the surface of a liquid whose area is unlimited, and we
shall also suppose that the wavelength is small in comparison with the depth of the liquid;
we can then regard the liquid as infinitely deep. We shall therefore omit the boundary
conditions at the sides and bottom.

Let us consider a gravity wave propagated along the x-axis and uniform in the y-
direction;in such a wave, all quantities are independent of y. We shall seek a solution which
is a simple periodic function of time and of the coordinate x, i.e. we put

¢ = f(z)cos (kx — wt).

Here w is what is called the circular frequency (we shall say simply the frequency) of the
wave; k is called the wave number; A = 2n/k is the wavelength.
Substituting in the equation A ¢ = 0, we have

d2f/dz? —k2f = 0.
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The solution which decreases as we go into the interior of the liquid (i.e. as z - — 00) is

¢ = Aé*cos (kx — wt). (12.6)
We have also to satisfy the boundary condition (12.5). Substituting (12.6), we obtain
w? =kg (12.7)

as the relation between the wave number and the frequency of a gravity wave (the
dispersion relation).

The velocity distribution in the moving liquid is found by simply taking the space
derivatives of ¢:

v, = —Aké*sin (kx—wt), v, = Ake**cos (kx — wt). (12.8)

We see that the velocity diminishes exponentially as we go into the liquid. At any given
point in space (i.e. for given x, z) the velocity vector rotates uniformly in the xz-plane, its
magnitude remaining constant.

Let us also determine the paths of fluid particles in the wave. We temporarily denote by
x, z the coordinates of a moving fluid particle (and not of a point fixed in space), and by x,,
z, the values of x and z at the equilibrium position of the particle. Then v, = dx/dt,
v, = dz/dt, and on the right-hand side of (12.8) we may approximate by writing x,, z, in
place of x, z, since the oscillations are small. An integration with respect to time then gives

X—Xg = —Age"zo cos (kx, — wt),
(12.9)
2—25= —A;Dk—e"zo sin (kxo — wt).
Thus the fluid particles describe circles about the points (x,, z,) with a radius which

diminishes exponentially with increasing depth.
The velocity of propagation U of the wave is, as we shall show in §67, U = dw/dk.

Substituting here w = ./ (kg), we find that the velocity of propagation of gravity waves on
an unbounded surface of infinitely deep liquid is
U =4/(g/k) =4/ (gh/2m). (12.10)

It increases with the wavelength.

LONG GRAVITY WAVES

Having considered gravity waves whose length is small compared with the depth of the
liquid, let us now discuss the opposite limiting case of waves whose length is large
compared with the depth. These are called long waves.

Let us examine first the propagation of long waves in a channel. The channelis supposed
to be along the x-axis, and of infinite length. The cross-section of the channel may have any
shape, and may vary along its length. We denote the cross-sectional area of the liquid in the
channel by S = S(x,¢). The depth and width of the channel are supposed small in
comparison with the wavelength.

We shall here consider longitudinal waves, in which the liquid moves along the channel.
In such waves the velocity component v, along the channel is large compared with the
components v, v,.
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We denote v, by v simply, and omit small terms. The x-component of Euler’s equation
can then be written in the form

@B _ 1op
ot pox’
and the z-component in the form
10p ]
_p_a_z. = =9,

we omit terms quadratic in the velocity, since the amplitude of the wave is again supposed
small. From the second equation we have, since the pressure at the free surface (z = {) must
be p 0>

p=po+gp(—2).

Substituting this expression in the first equation, we obtain

Ov/0t = —gol/ox. (12.11)

The second equation needed to determine the two unknowns v and { can be derived
similarly to thé equation of continuity; it is essentially the equation of continuity for the
casein question. Let us consider a volume of liquid bounded by two plane cross-sections of
the channel at a distance dx apart. In unit time a volume (Sv), of liquid flows through one
plane, and a volume (Sv), , 4, through the other. Hence the volume of liquid between the
two planes changes by

d(Sv)
0x
Since the liquid is incompressible, however, this change must be due simply to the change

in the level of the liquid. The change per unit time in the volume of liquid between the two
planes considered is (0S/dt)dx. We can therefore write

dx.

(Sv)x+dx - (Sv)x =

oS . d(Sv)
3:9x = ~ 5 9%
or
S  a(Sv) _
5t o =0 (12.12)

This is the required equation of continuity.
Let S, be the equilibrium cross-sectional area of the liquid in the channel. Then
S = §, + §', where §'is the change in the cross-sectional area caused by the wave. Since the
change in the liquid level is small, we can write S’ in the form b{, where b is the width of the
channel at the surface of the liquid. Equation (12.12) then becomes
ol  0(Sev)

p% . 12.13
5t o 0 (12.13)

Differentiating (12.13) with respect to t and substituting dv/dt from (12.11), we obtain

8 ga (.
W‘BEE(%E} =0. (12.14)
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If the channel cross-section is the same at all points, then S, = constant and

0*f g5, 0%

- =0. 12.15
ot2 b ox? ( )

This is called a wave equation: as we shall show in §64, it corresponds to the propagation of

waves with a velocity U which is independent of frequency and is the square root of the
coefficient of 92¢/0x>. Thus the velocity of propagation of long gravity waves in channels is

U = /(gSo/b). (12.16)

In an entirely similar manner, we can consider long waves in a large tank, which we
suppose infinite in two directions (those of x and y). The depth of liquid in the tank is
denoted by h. The component v, of the velocity is now small. Euler’s equations take a form
similar to (12.11):

iv_x_*_ aC—O a_vii ac_

ot Iax T T 95

The equation of continuity is derived in the same way as (12.12) and is

0. (12.17)

@ + o(hv,) + d(hv,)

at ' ox oy 0.

We write the depth h as h, + {, where h, is the equilibrium depth. Then
0f | d(hovy) | O(hov,) _
't T Ty

Let us assume that the tank has a horizontal bottom (h, = constant). Differentiating
(12.18) with respect to ¢t and substituting (12.17), we obtain

62C aZC 52
W—gho<ai+$%) =0. (12.19)

This is again a (two-dimensional) wave equation; it corresponds to waves propagated with
a velocity

0. (12.18)

U = /(gho). (12.20)

PROBLEMS

PROBLEM 1. Determine the velocity of propagation of gravity waves on an unbounded surface of liquid with
depth h.

SOLUTION. At the bottom of the liquid, the normal velocity component must be zero, i.e. v, = d¢/0z = O for
z = —h. From this condition we find the ratio of the constants 4 and B in the general solution

¢ = [Ae* + Be **]cos (kx — wt).
The result is
¢ = Acos (kx — wt)cosh k(z + h).
From the boundary condition (12.5) we find the relation between k and @ to be
@? = gktanh kh.
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The velocity of propagation of the wave is

1 g kh
U= [—2 | tanhkh+— |,
2\/ ktanhkh[ AR Cosh? kh:'

For kh > 1 we have the result (12.10), and for kh < 1 the result (12.20).

PROBLEM 2. Determine the relation between frequency and wavelength for gravity waves on the surface
separating two liquids, the upper liquid being bounded above by a fixed horizontal plane, and the lower liquid
being similarly bounded below. The density and depth of the lower liquid are p and h, those of the upper liquid
are p’ and k', and p > p'.

SOLUTION. We take the xy-plane as the equilibrium plane of separation of the two liquids. Let us seck a
solution having in the two liquids the forms

¢ = Acoshk(z+ h)cos(kx — wt), }
(1)

¢’ = Bcosh k(z— h’)cos(kx — wt),

so that the conditions at the upper and lower boundaries are satisfied; see the solution to Problem 1. At the

surface of separation, the pressure must be continuous; by (12.2), this gives the condition

7

d d
ng+pi = p'gC+p’—¢— for z={,

ot ot
or
1 ¢’ 64))
= P o) 2
g(p—p’)(” PR @

Moreover, the velocity component v, must be the same for each liquid at the surface of separation. This gives the
condition

0¢/0z=0¢'/0z for z=0. 3)
Now v, = d¢/0z = 0{ /0t and, substituting (2), we have
,.00 0% o?
oo-p2 =yl 22 “)

oz P o P
Substituting (1) in (3) and (4) gives two homogeneous linear equations for 4 and B, and the condition of
compatibility gives
o = kg(p—p’)
pcothkh + p’cothkh’
For kh > 1, kb’ > 1 (both liquids very deep),

’

wz = kgp__‘ej’
p+p
while for kh < 1, kh’ < 1 (long waves),
\/g(p —p')hk’
(D = k —',—_lﬁ“-
ph' +p'h

Lastly, if kh 2 1 and k' < 1,
w® = k*gh' (p—p')/p.

PROBLEM 3. Determine the relation between frequency and wavelength for gravity waves propagated
simultaneously on the surface of separation and on the upper surface of two liquid layers, the lower (density p)
being infinitely deep, and the upper (density p’) having depth i’ and a free upper surface.

SOLUTION. We take the xy-plane as the equilibrium plane of separation of the two liquids. Let us seek a
solution having in the two liquids the forms

¢ = Ae**cos(kx — wt), }

¢’ = [Be % + Ce**] cos (kx — wt).

(1)
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At the surface of separation, i.e. for z = 0, we have the conditions (see Problem 2)

o¢ _o¢ 9 _ B¢ P

> _r —p = — 2
A NGl vl i P 7 @
and at the upper surface, i.e. for z = k', the condition
¢ 18*¢’
4 =0 3
2 gt )

The first equation (2), on substitution of (1), gives A = C — B, and the remaining two conditions then give two
equations for Band C; from the condition of compatibility we obtain a quadratic equation for w?, whose roots are

— o)1 — e~ 2K
? kgﬁ ,p)L‘i—_j,ZT, w® = kg.
p+p +(p—p)e

For b’ — oo these roots correspond to waves propagated independently on the surface of separation and on the
upper surface.

PrOBLEM 4. Determine the characteristic frequencies of oscillation (see §69) of a liquid with depth hina
rectangular tank with width a and length b.

SoLuTION. We take the x and y axes along two sides of the tank. Let us seek a solution in the form of a
stationary wave:

¢ = f(x,y)cosh k(z + h)cos wt.
We obtain for f the equation
2 2
:7{ + gy—{ +k3f=0,
and the condition at the free surface gives, as in Problem 1, the relation
w? = gktanh kh.
We take the solution of the equation for fin the form
f=cospxcosqy, p*+q* =k~
At the sides of the tank we must have the conditions
v, =0¢/ox=0 for x=0,q;
v,=0¢/0y=0 for y=0,b.

Hence we find p = mn/a, ¢ = nn/b, where m, n are integers. The possible values of k? are therefore

m? n?
2 _ o2
k*=n (-;2—4';2’)

§13. Internal waves in an incompressible fluid

There is a kind of gravity wave which can be propagated inside an incompressible fluid.
Such waves are due to an inhomogeneity of the fluid caused by the gravitational field. The
pressure (and therefore the entropy s) necessarily varies with height; hence any
displacement of a fluid particle in height destroys the mechanical equilibrium, and
consequently causes an oscillatory motion. For, since the motion is adiabatic, the particle
carries with it to its new position its old entropy s, which is not the same as the equilibrium
value at the new position.
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We shall suppose below that the wavelength is small in comparison with distances over
which the gravitational field causes a marked change in density ; and we shall regard the
fluid itself as incompressible. This means that we can neglect the change in its density
caused by the pressure change in the wave. The change in density caused by thermal
expansion cannot be neglected, since it is this that causes the phenomenon in question.

Let us write down a system of hydrodynamic equations for this motion. We shall use a
suffix 0 to distinguish the values of quantities in mechanical equilibrium, and a prime to
mark small deviations from those values. Then the equation of conservation of the entropy
§ = 5, + s’ can be written, to the first order of smallness,

0s'/0t+ v-grads, =0, (13.1)

where s, like the equilibrium values of other quantities, is a given function of the vertical
coordinate z.

Next, in Euler’s equation we again neglect the term (v - grad)v (since the oscillations are
small); taking into account also the fact that the equilibrium pressure distribution is given
by gradp, = p,g, we have to the same accuracy

ov gradp gradp’ gradp, ,

Evia + g=— + 2 pP-

ot p Po Po
Since, from what has been said above, the change in density is due only to the change in
entropy, and not to the change in pressure, we can put

' apO ’
= (680 )ps ’

and we then obtain Euler’s equation in the form
0 0 '
—5: = E(—pq) s — gradi. (13.2)

We can take p, under the gradient operator, since, as stated above, we always neglect the
change in the equilibrium density over distances of the order of a wavelength. The density
may likewise be supposed constant in the equation of continuity, which then becomes

divv=0. (13.3)
We shall seek a solution of equations (13.1)-(13.3) in the form of a plane wave:
v = constant x eik'r- 1),
and similarly for s’ and p'. Substitution in the equation of continuity (13.3) gives

v-k=0, (13.4)

t The density and pressure gradients are related by
grad p = (0p/dp). grad p = c* grad p,

where c is the speed of sound in the fluid. The hydrostatic equation grad p = pg thus gives grad p = (p/c?)g. The
density in the gravitational field therefore varies considerably over distances ! >~ c¢?/g. For air and water,
I ~ 10 km and 200 km respectively.
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1.e. the fluid velocity is everywhere perpendicular to the wave vector k (a transverse wave).
Equations (13.1) and (13.2) give

1/0 k
iws’ = v-grads,, —iwv = _<_ﬂ’) s'g_l_p'_
Po\ 0so p

The condition v-k = 0 gives with the second of these equations

dp
2. = 0 o .
ik*p (——aSO )ps g-k,

and, eliminating vand s’ from the two equations, we obtain the desired dispersion relation,

w? = wy? sin?0, (13.5)

where
2_ _9(9) ds 13.6
o P(as)pdz. (136

Here and henceforward we omit the suffix zero to the equilibrium values of thermo-
dynamic quantities; the z-axis is vertically upwards, and 6 is the angle between this axis and
the direction of k. If the expression on the right of (13.6) is positive, the condition for the
stability of the equilibrium distribution s(z) (the condition that convection be absent—see
§4) is fulfilled.

We see that the frequency depends only on the direction of the wave vector, and not on
its magnitude. For § = Q we have w = 0; this means that waves of the type considered, with
the wave vector vertical, cannot exist.

If the fluid is in both mechanical equilibrium and complete thermodynamic equilibrium,
its temperature is constant and we can write

ds_(as\dp _ (s
dz \dp/;dz P9 op/r
Finally, using the well-known thermodynamic relations
s\ _1(3) (%) _T(%
op)r p*\oT), os ), c,\oT),

where c, is the specific heat per unit mass, we find

ng;_)
T/,

.= |19
Wp = — 3. (13.8)
¢ VD

CppP

The dependence of the frequency on the direction of the wave vector has the result that
the wave propagation velocity U = dw/dk is not parallel to k. Representing w(k) in the
form

, (13.7)

In particular, for a perfect gas,

o = wo\/[1 - (k-v/k)*],
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where v is a unit vector in the vertically upward direction, and differentiating, we find
= — (wo?/wk) (m-v) [v—(n-v)n] (13.9)
(where m = k/k). This is perpendicular to k, and its magnitude is
U = (wy/k)cos 0.
Its vertical component is

U-v= —(wy/k)cosOsinb.

§14. Waves in a rotating fluid

Another kind of internal wave can be propagated in an incompressible fluid uniformly
rotating as a whole. These waves are due to the Coriolis forces which occur in rotation.

We shall consider the fluid in coordinates rotating with it. With this treatment, the
mechanical equations of motion must include additional (centrifugal and Coriolis) terms.
Correspondingly, forces (per unit mass of fluid) must be added on the right of Euler’s
equation. The centrifugal force can be written as grad 3 (Qxr)?, where Q is the angular
velocity vector of the fluid rotation. This term can be combined with the force
—(1/p) grad p by using an effective pressure

P=p-L1p@xr) (14.1)

The Coriolis force is 2vx€, and occurs only when the fluid has a motion relative to the
rotating coordinates, v being the velocity in those coordinates. We can transfer this term to
the left-hand side of Euler’s equation, writing the equation as

ov/dt+ (v-grad)v +2Qxv = —(1/p)grad P. (14.2)

The equation of continuity is unchanged; for an incompressible fluid, it is simply divv = 0.
We shall again assume the wave amplitude to be small, and neglect the term quadratic in
the velocity in (14.2), which becomes

ov/ot+2Qxv = —(1/p)gradp’, (14.3)

where p' is the variable part of the pressure in the wave, and p is a constant. The pressure
can be eliminated by taking the curl of both sides. The right-hand side gives zero, and on
the left-hand side, since the fluid is incompressible,

curl (Qxv) = Qdivv—(Q-grad)v

= — (Q-grad)v.
Taking the direction of Q as the z-axis, we write the resulting equation as
0 ov :
~curlv= 296—:. (14.4)
We seek the solution as a plane wave
v=Aélk -0 (14.5)

which, since div v = 0, satisfies the transversality condition

k-A=0. (14.6)
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Substitution of (14.5) in (14.4) gives
wkXv = 2iQk,v. (14.7)

The dispersion relation for these waves is found by eliminating v from this vector
equation. Vector multiplication on both sides by k gives

— wk?v = 2iQk kX v
and a comparison of the two equations yields the dependence of w on k:
w = 2Qk,/k = 2Qcos 0, (14.8)

where 0 is the angle between k and Q.
With (14.4), (14.7) takes the form

nXv =iv,

where n = k/k. If we use the complex wave amplitude in the form A = a +ib with real
vectors a and b, it follows that nxb = a: the vectors a and b (both lying in the plane
perpendicular to k) are at right angles and equal in magnitude. By taking their directions as
the x and y axes, and separating real and imaginary parts in (14.5), we find

v, = acos (wt—k-r), v, = —asin(wt—k-r).

The wave is thus circularly polarized: at each point in space, the vector v rotates in the
course of time, remaining constant in magnitude.t
The wave propagation velocity is

U = dw/0k = (2Q/k)[v—n(n-v)], (14.9)

where v is a unit vector along €; as with internal gravity waves, it is perpendicular to the
wave vector. Its magnitude and its component along Q are

U= (2Q/k)sinf, U-v = (2Q/k)sin%0 = Usin 6.

These are called inertial waves. Since the Coriolis forces do no work on the moving fluid,
the energy in the waves is entirely kinetic energy.

One particular form of axially symmetrical (not plane) inertial waves can be propagated
along the axis of rotation of the fluid; see Problem 1.

There is one more comment to be made, regarding steady motions in a rotating fluid
rather than wave propagation in it.

Let I be a characteristic length for such motion, and u a characteristic velocity. In order
of magnitude, the term (v-grad)v in (14.2) is u?/l, and 2QXv is Qu. The former can be
neglected in comparison with the latter if u/IQ < 1,and the equation of steady motion then
reduces to

20xv = —(1/p)grad P (14.10)
or

2Qu, = (1/p)oP/0ox, 2Qv, = —(1/p)oP/dy, 0P/0z =0,

T This motion is relative to rotating coordinates. For fixed coordinates, it is combined with the rotation of the
whole fluid.
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where x and y are Cartesian coordinates in the plane perpendicular to the axis of rotation.
Hence we see that P, and therefore v, and v, are independent of the longitudinal
coordinate z. Next, eliminating P from the first two equations, we get
Ov,  Ov,
ox dy
and the equation div v = 0 then shows that dv,/dz = 0. Thus steady motion (in rotating
coordinates)in a rapidly rotating fluid is a superposition of two independent motions: two-

dimensional flow in the transverse plane and axial flow independent of z (J. Proudman
1916).

0,

PROBLEMS

PrROBLEM 1. Determine the motion in an axially symmetrical wave propagated along the axis of an
incompressible fluid rotating as a whole (W. Thomson 1880).

SOLUTION. We take cylindrical polar coordinates r, ¢, z, with the z-axis parallel to . In an axially symmetrical
wave, all quantities are independent of the angle variable ¢. The dependence on time and on the coordinate z is
given by a factor exp [i(kz — wt)]. Taking components in (14.3), we get

—iwv, —2Qvy = —(1/p)op’ /or, (1)
—iwvy +2Qu, = 0, —iwv, = —(ik/p)p’. 2
These are to be combined with the equation of continuity
10
~=(rv,) + ikv, = 0. 3
ror
Expressing vy and p’ in terms of v, by means of (2) and (3) and substituting in (1), we find the equation
d*F 1dF [4Q%%k? 1
—+— —k2—= |F=0 4
dr2+rdr+[ w? r’] @
for the function F(r) which determines the radial dependence of v,:
v, = F(I‘)ei(u"_h).

The solution that vanishes for r =0 is
F = constant x J, [kr\/{ @4Q%/w?)—-1}], 5)

where J, is a Bessel function of order 1.
The motion comprises regions between coaxial cylinders with radius r, such that

kr, /{4 /w*) =1} = x,,

where x,, x,, . . . are the successive zeros of J;(x). On these cylindrical surfaces v, = 0, and the fluid therefore
does not cross them.

For these waves in an infinite fluid, @ is independent of k. The possible values of the frequency are, however,

restricted by the condition w < 2€); if this is not satisfied, (4) has no solution satisfying the necessary conditions of
finiteness.

If the rotating fluid is bounded by a cylindrical wall with radius R, we have to use the condition v, = 0 at the
wall. This gives the relation

ka\/{(4Q*/w?) -1} = x,
between w and k for a wave with a given n (the number of coaxial regions in it).
PROBLEM 2. Derive an equation describing an arbitrary small perturbation of the pressure in a rotating fluid.
SoruTioN. Equation (14.3) in components is
ov, 20 1 @ v, 10p ov, 10p

9x _ = Y Loy = P = 1
at O pox’ ot + 2 poy’ ot p 0z ™)
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Differentiating these with respect to x, y, and z, adding, and using div v = 0, we find

1 dv, Ov
—Ap =2Q| 2X-—2)
p P (6x 6y)

Differentiation with respect to ¢, again using equations (1), gives

10 6v
——Ap =4Q2=
pot dz

and by a further differentiation with respect to ¢ we arrive at the final equation

2 alpl
SEOP H4 =0,

For periodic perturbations with frequency w, this becomes
azpr a2p/ (1 492 )az r

ox? +a—yz‘ 222 =0.
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3

For waves having the form (14 5), this of course gives the known dispersion relation (14.8), with v < 2Q and a
negative coefficient of 92p’/dz? in (3). Perturbations from a point source are propagated along generators of a

cone whose axis is along Q and whose vertical angle is 20, where sin § = w/2Q.

When o > 2Q, the coefficient of 92p’/dz% in (3) is positive, and this equation becomes Laplace’s equation by an
obvious change in the z scale. In this case, a point source of perturbation affects the whole volume of the fluid, to

an extent that decreases away from the source according to a power law.



CHAPTER II

VISCOUS FLUIDS

§15. The equations of motion of a viscous fluid

Let us now study the effect of energy dissipation, occurring during the motion of a fluid,
on that motion itself. This process is the result of the thermodynamic irreversibility of the
motion. This irreversibility always occurs to some extent, and is due to internal friction
(viscosity) and thermal conduction.

In order to obtain the equations describing the motion of a viscous fluid, we have to
include some additional terms in the equation of motion of an ideal fluid. The equation of
continuity, as we see from its derivation, is equally valid for any fluid, whether viscous or
not. Euler’s equation, on the other hand, requires modification.

We have seen in §7 that Euler’s equation can be written in the form

‘aai (pv;) = — ?E =,
t 0x,
wherell ;, is the momentum flux density tensor. The momentum flux given by formula (7.2)
represents a completely reversible transfer of momentum, due simply to the mechanical
transport of the different particles of fluid from place to place and to the pressure forces
acting in the fluid. The viscosity (internal friction) causes another, irreversible, transfer of
momentum from points where the velocity is large to those where it is small.

The equation of motion of a viscous fluid may therefore be obtained by adding to the
“ideal” momentum flux (7.2) a term — ¢’;, which gives the irreversible “viscous” transfer of
momentum in the fluid. Thus we write the momentum flux density tensor in a viscous fluid
in the form

I1,, = poy + pov, — 6’y = — 0y + pv;v;. (15.1)

The tensor
0y = — POy +0'y (15.2)

is called the stress tensor, and ¢’ the viscous stress tensor. o, gives the part of the
momentum flux that is not due to the direct transfer of momentum with the mass of
moving fluid.}

The general form of the tensor ¢';, can be established as follows. Processes of internal
friction occur in a fluid only when different fluid particles move with different velocities, so
that there is a relative motion between various parts of the fluid. Hence ¢’;, must depend on
the space derivatives of the velocity. If the velocity gradients are small, we may suppose

+ We shall see below that ¢’ contains a term proportional to d;, i.e. of the same form as the term pd,,. When

the momentum flux tensor is put in such a form, therefore, we should specify what is meant by the pressure p; see
the end of §49.

44
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that the momentum transfer due to viscosity depends only on the first derivatives of the
velocity. To the same approximation, ¢’;, may be supposed a linear function of the
derivatives 0v;/0x,. There can be no terms in ¢’;, independent of dv;/0dx,, since ¢’;, must
vanish for v = constant. Next, we notice that ¢’;, must also vanish when the whole fluid is
in uniform rotation, since it is clear that in such a motion no internal friction occurs in the
fluid. In uniform rotation with angular velocity €, the velocity v is equal to the vector
product Q Xr. The sums
ov; Oy,
—+
0x, O0x;
are linear combinations of the derivatives 0v;/0x,, and vanish when v = Q Xr. Hence ¢’;,

must contain just these symmetrical combinations of the derivatives dv;/0x,.
The most general tensor of rank two satisfying the above conditions is

, _ f(Ovi  Ou
o' = n<£+ P L ) (6, 0 o (153)
with coefficients n and { independent of the velocity. In making this statement we use the
fact that the fluid is isotropic, as a result of which its properties must be described by scalar
quantities only (in this case, nand {). The termsin (15.3) are arranged so that the expression
in parentheses has the property of vanishing on contraction with respect to i and k.t The
constants n and { are called coefficients of viscosity, and { often the second viscosity. As we
shall show in §§16 and 49, they are both positive:

n>0, (>0 (15.4)

The equations of motion of a viscous fluid can now be obtained by simply adding the
expressions da’;, /0x, to the right-hand side of Euler’s equation

av o, ov; \ _ ap
ot " Mox, )T Tox
Thus we have

ov; ov; op 0 dv; Ov, ,. O .
(aﬁ k) axi+ax’({n(axk+axi 36,-,‘5;1 ax C—: (15.5)

This is the most general form of the equations of motion of a viscous fluid. The quantities
and { are functions of pressure and temperature. In general, p and 7, and therefore n and
are not constant throughout the fluid, so that 5 and { cannot be taken outside the gradient
operator.

In most cases, however, the viscosity coefficients do not change noticeably in the fluid,
and they may be regarded as constant. We then have equations (15.5), in vector form, as

P[g“L ("g'ad)V] = —gradp+nAv+ ({+3n)graddivv. (15.6)

This is called the Navier—Stokes equation. It becomes considerably simpler if the fluid
may be regarded as incompressible, so that div v = 0,and the last term on the right of (15.6)

t That is, on taking the sum of the components with i = k.
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is zero. In discussing viscous fluids, we shall almost always regard them as
incompressible, and accordingly use the equation of motion in the formt

v

1
o + (v-grad)v = —; gradp +%A V. (15.7)

The stress tensor in an incompressible fluid takes the simple form

. ov, 0
O = "P‘)ik'*‘ﬂ( o + L ) (15.8)

0x, 5—x,

We see that the viscosity of an incompressible fluid is determined by only one coefficient.
Since most fluids may be regarded as practically incompressible, it is this viscosity
coefficient n which is generally of importance. The ratio

v=n/p (15.9)

is called the kinematic viscosity (while n itself is called the dynamic viscosity). We give below
the values of # and v for various fluids, at a temperature of 20° C:

1 (g/cm sec) v (cm?/sec)
Water 0-010 0010
Air 0-00018 0-150
Alcohol 0018 0-022
Glycerine 85 68
Mercury 00156 0-0012

It may be mentioned that the dynamic viscosity of a gas at a given temperature is
independent of the pressure. The kinematic viscosity, however, is inversely proportional to
the pressure.

The pressure can be eliminated from equation (15.7) in the same way as from Euler’s
equation. Taking the curl of both sides, we obtain, instead of equation (2.11) as for an ideal
fluid,

gf (curlv) = curl (v X curl v) + vA (curlv)

Since the fluid is incompressible, the equation can be transformed by expanding the
product in the first term on the right and using the equation div v = 0:

gz(curl +v)+ (v-grad) curl v— (curl v- grad) v

= vA curlv. (15.10)

T Equation (15.7) was first stated as a result of studies on models by C. L. Navier (1827). A derivation, similar to
the modern one, for equations (15.6) (without the { term) and (15.7) was given by G. G. Stokes (1845).
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When the velocity distribution is known, the pressure distribution in the fluid can be found
by solving the Poisson-type equation
dv; Ou, 0%v;v,

- = —p—o 15.11

Pox, ox,  Pox.ox’ (5.1
which is obtained by taking the divergence of (15.7).

We may also give the equation satisfied by the stream function Y(x,y) in two-
dimensional flow of an incompressible viscous fluid. It is derived by substituting (10.9)in
(15.10):

Ap =

9—[& 4 6L\¢+6¢/ N

0. 15.12
ot ox dy dy Ox VALY = ( )

We must also write down the boundary conditions on the equations of motion of a
viscous fluid. There are always forces of molecular attraction between a viscous fluid and
the surface of a solid body, and these forces have the result that the layer of fluid
immediately adjacent to the surface is brought completely to rest, and “adheres” to the
surface. Accordingly, the boundary conditions on the equations of motion of a viscous
fluid require that the fluid velocity should vanish at fixed solid surfaces:

v=0. (15.13)

It should be emphasized that both the normal and the tangential velocity component must
vanish, whereas for an ideal fluid the boundary conditions require only the vanishing of
v,.T

In the general case of a moving surface, the velocity v must be equal to the velocity of the
surface.

It is easy to write down an expression for the force acting on a solid surface bounding the
fluid. The force acting on an element of the surface is just the momentum flux through this
element. The momentum flux through the surface element df is

lkdﬂ (pv U — olk)dﬁt

Writing df, in the form df, = n,df, where nis a unit vector along the normal, and recalling
that v = 0 at a solid surface,} we find that the force P acting on unit surface area is

P = —oun, = pn,—a'yn,. (15.14)

The first term is the ordinary pressure of the fluid, while the second is the force of friction,
due to the viscosity, acting on the surface. We must emphasize that n in (15.14) is a unit
vector along the outward normal to the fluid, i.e. along the inward normal to the solid
surface.

t+ We may note that, in general, Euler’s equations cannot be satisfied with the extra boundary condition (in
comparison with the case of an ideal fluid) that the tangential velocity be zero. Mathematically, this occurs
becuase the equation is first-order in the derivatives with respect to the coordinates, whereas the Navier-Stokes
equation is second-order.

1 In determining the force acting on the surface, each surface element must be considered in a frame of
reference in which it is at rest. The force is equal to the momentum flux only when the surface is fixed.

FM-C
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If we have a surface of separation between two immiscible fluids, the conditions at the
surface are that the velocities of the fluids must be equal and the forces which they exert on
each other must be equal and opposite. The latter condition is written

Ny kG1, i +N2,162,5 =0,

where the suffixes 1 and 2 refer to the two fluids. The normal vectors n, and n, are in
opposite directions, i.e. n;, = —n, = n, so that we can write

NGy iy = N;03 - (15.15)
At a free surface of the fluid the condition
Oy =06’ yn,—pn; =0 (15.16)
must hold.

EQUATIONS OF MOTION IN CURVILINEAR COORDINATES

We give below, for reference, the equations of motion for a viscous incompressible fluid
in frequently used curvilinear coordinates. In cylindrical polar coordinates r, ¢, z the
components of the stress tensor are

oy, 10v, Ov, v,
G = _p+2'7—a—r’ G,y = (r a¢+w_7>s
1 0v, ov, 10v,
oom () ema(3E05)
av ov, O,
0, = F 0, = n(—a—r-+ % ) (15.17)

The three components of the Navier—Stokes equation are

0 2 1
i+(v-grad)v,~&ﬁ=— a—p+v Av,—i?ﬁ—& ,
ot r p or r

ov 10 20
¢+(v -grady, + vv4, P (A vy + U’—?),

o pr oo iy
g+l el = —%%”A”v (15.18)
where
(v-grad) f = v—f+_°’(%+ af
as=, ror (Z{) 122;{#’7.

The equation of continuity is

1 a(rv,) 41 1 6v¢ 0, ov,

r or r d¢ Oz =0. (15.19)
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§15
In spherical polar coordinates r, ¢, 0 we have for the stress tensor
ov
= —p+2n—,
pten or

1
To0 = —P+20 rsinf o¢ r r
10v, v,
Ogg= P+2'7< 600‘*‘7),
10v, Jdv, v,
'”(raeJrE’T)’

_ gL Ov  10v, vscotd
=M sin0dp "ra0  r )

dv, v, wvgcotl
¢ 4 2 )’

(15.20)

Tor=1 (_67+rsin0 op r

v, 1 0y, 174,)

while the Navier-Stokes equations are

v, Vo’ +0y°
ot
10p 2 0O(ve sin0) 2 Ovy 20,
=TtV Ar g 5, o 7P
p or resin“‘d 00 r’sinf d¢ r

0V,
-0 .orad re__ i
+ (v-grad)v, + r "

ot

1 6p 2cosgav¢+£ ﬁv,_ Vo

T pr 60" ® r%in%0 d¢ r? 90 r’sin?6 |
aa— + (v gradyp, + 08 4 FoteOL. 6

1 Jp PAN) 20050 Ovg vy
=2 ' o _ 15.21

prsin6 5¢+V[A et g 2sm(90¢> r?sin?0 d¢  r’sin?0 | ( )

where

_, A vl v Of
(v-grad) f = Urar T T 00 rsindog’

Jof 1 of 1o
A== LA W S
f= 26r( 3r>+rzsin060(smoaﬂ)+rzsin206¢2

The equation of continuity is

1 é(r*v,) 1  d(vysinb) 1 ov,
- e — =0. 22
rr or + rsinf 00 rsinf o¢ 0 (1522)



50 Viscous Fluids §16
§16. Energy dissipation in an incompressible fluid

The presence of viscosity results in the dissipation of energy, which is finally
transformed into heat. The calculation of the energy dissipation is especially simple for an
incompressible fluid.

The total kinetic energy of an incompressible fluid is

E,=13p Jvde.

We take the time derivative of this energy, writing d(3pv®)/0t = pv,0v;/0t and substituting
for dv;/0t the expression for it given by the Navier—Stokes equation:

5vi . ‘%__l ap +l aa,l‘k
ot~ *ox, pox;, p 0x
The result is
i(lpvz) = —pv-(v-grad) o
ot * 0x;

ov, '

0x;
"Here v-0’ denotes the vector whose components are v;6';. Since div v =0 for an
incompressible fluid, we can write the first term on the right as a divergence:

9 dv;
= Gpv?) = —div[pv<%02+%>—v-d’:| — 'y a—::k (16.1)

The expression in brackets is just the energy flux density in the fluid: the term
pv(3v? + p/p) is the energy flux due to the actual transfer of fluid mass, and is the same as
the energy flux in an ideal fluid (see (10.5)). The second term, v - ¢’, is the energy flux due to
processes of internal friction. For the presence of viscosity results in a momentum flux ¢’y ;
a transfer of momentum, however, always involves a transfer of energy, and the energy flux
is clearly equal to the scalar product of the momentum flux and the velocity.

If we integrate (16.1) over some volume V, we obtain

0, .
— J%pvde = —§ [pv(%vz +£> —v- a’:l -df - Ja’ik%d V. (16.2)
ot p 0x,

The first term on the right gives the rate of change of the kinetic energy of the fluid in V'
owing to the energy flux through the surface bounding V. The integral in the second term
is consequently the decrease per unit time in the kinetic energy owing to dissipation.

If the integration is extended to the whole volume of the fluid, the surface integral
vanishes (since the velocity vanishes at infinityt), and we find the energy dissipated per unit
time in the whole fluid to be

. ov; ov; Ov
Ekin= J lka dV— —IJ Ilk(a +6—k>dV
k k i

+ We are considering the motion of the fluid in a system of coordinates such that the fluid is at rest at infinity.
Here, and in similar cases, we speak, for the sake of definiteness, of an infinite volume of fluid, but this implies no
loss of generality. For a fluid enclosed in a finite volume, the surface integral again vanishes, because the velocity
at the surface vanishes.

= —p(v-grad)(%v2+§>+dlv (veo')—0'y—
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since the tensor ¢';;, is symmetrical. In incompressible fluids, the tensor ¢’; is given by
(15.8), so that we have finally for the energy dissipation in an incompressible fluid

. avi av 2
E,=—1%n K&fr&&) dav. (16.3)

The dissipation leads to a decrease in the mechanical energy, i.c. we must have E, <O.
The integral in (16.3), however, is always positive. We therefore conclude that the viscosity
coefficient 7 is always positive.

PROBLEM

Transform the integral (16.3) for potential flow into an integral over the surface bounding the region of flow.
SOLUTION. Putting dv,;/dx, = 0v,/0x; and integrating once by parts, we find

. ov; \? ov;
Epo = -2p [{=2) dv = =29 fv—df,
kin "J(ax) n f v; P Ji

| -—rpjgradv’-df.

or

§17. Flow in a pipe

We shall now consider some simple problems of motion of an incompressible viscous
fluid.

Let the fluid be enclosed between two parallel planes moving with a constant relative
velocity u. We take one of these planes as the xz-plane, with the x-axis in the direction of u.
It is clear that all quantities depend only on y, and that the fluid velocity is everywhere in
the x-direction. We have from (15.7) for steady flow

dp/dy =0, d?v/dy* =0.

(The equation of continuity is satisfied identically.) Hence p = constant, v = ay + b. For
y = 0and y = h (h being the distance between the planes) we must have respectively v = 0
and v = u. Thus

v=yu/h. (17.1)

The fluid velocity distribution is therefore linear. The mean fluid velocity is

1

6=;Ivdy = du. (17.2)

From (15.14) we find that the normal component of the force on either plane is just p, as it
should be, while the tangential friction force on the plane y = 0 is

0xy = ndv/dy = nu/h; (17.3)

the force on the plane y = his —nu/h.
Next, let us consider steady flow between two fixed parallel planes in the presence of a
pressure gradient. We choose the coordinates as before; the x-axis is in the direction of
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motion of the fluid. The Navier-Stokes equations give, since the velocity clearly depends
only on y,

v _1dp 6p_0
ayr npox’ dy

The second equation shows that the pressure is independent of y, i.e. it is constant across
the depth of the fluid between the planes. The right-hand side of the first equation is
therefore a function of x only, while the left-hand side is a function of y only; this can be
true only if both sides are constant. Thus dp/dx = constant, i.e. the pressure is a linear
function of the coordinate x along the direction of flow. For the velocity we now obtain
1dp,
v= 2—" a;y +ay+ b.
The constants a and b are determined from the boundary conditions, v = 0 for y = 0 and
y = h. The result 1s
1 dp
= —— % —h). 17.4
v 2 i (y—h) (17.4)
Thus the velocity varies parabolically across the fluid, reaching its maximum value in the
middle. The mean fluid velocity (averaged over the depth of the fluid) is

) h? dp
v= —EI; a (175)
The frictional force acting on one of the fixed planes is
Oy, = N(0v/0y),=o = —3hdp/dx. (17.6)

Finally, let us consider steady flow in a pipe with arbitrary cross-section (the same along
the whole length of the pipe, however). We take the axis of the pipe as the x-axis. The fluid
velocity is evidently along the x-axis at all points, and is a function of y and z only. The
equation of continuity is satisfied identically, while the y and z components of the
Navier-Stokes equation again give dp/dy = dp/dz = 0, i.e. the pressure is constant over
the cross-section of the pipe. The x-component of equation (15.7) gives

o*v 0%v _1dp

3 o2 qdx
Hence we again conclude that d p/dx = constant; the pressure gradient may therefore be
written — A p/I, where Ap is the pressure difference between the ends of the pipe and lis its
length.

Thus the velocity distribution for flow in a pipe is determined by a two-dimensional
equation of the form A v = constant. This equation has to be solved with the boundary
condition v = 0 at the circumference of the cross-section of the pipe. We shall solve the
equation for a pipe with circular cross-section. Taking the origin at the centre of the circle

and using polar coordinates, we have by symmetry v = v(r). Using the expression for the
Laplacian in polar coordinates, we have

1d(dvy__Ap
rdr\'dr) i’

17.7)
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Integration gives

A
V= —I”%r2+alogr+b. (17.8)

The constant a must be put equal to zero, since the velocity must remain finite at the centre
of the pipe. The constant b is determined from the requirement that v = O for r = R, where
R is the radius of the pipe. We then find

v= —A—p=(R2 —r?). (17.9)
4nl

Thus the velocity distribution across the pipe is parabolic.

It is easy to determine the mass Q of fluid passing per unit time through any cross-
section of the pipe (called the discharge). A mass p - 2nrv dr passes per unit time through an
annular element 2znr dr of the cross-sectional area. Hence

R

Q =2np J rvdr.
0

Using (17.9), we obtain

_ AP g (17.10)
8vi

The mass of fluid is thus proportional to the fourth power of the radius of the pipe.t

PROBLEMS

PrROBLEM 1. Determine the flow in a pipe of annular cross-section, the internal and external radii being R, R,.

SOLUTION. Determining the constants a and b in the general solution (17.8) from the conditions that v = 0
for r = R, and r = R,, we find

A R,2—R,?
,,=_P[R22_,2+ 2>~ R, ,og;}
anl log(R;/R,) "R,
The discharge is

Q= 7’;_"’[1;24 —R*—- (R,* — Ry’ ]

ProBLEM 2. The same as Problem 1, but for a pipe of elliptical cross-section.

SOLUTION. We seek a solution of equation (17.7) in the form v = Ay? + Bz? + C. The constants A4, B, C are
determined from the requirement that this expression must satisfy the boundary condition v =0 on the
circumference of the ellipse (i.e. Ay? + Bz> + C = 0 must be the same as the equation y?/a® + z2/b* = 1, where a
and b are the semi-axes of the ellipse). The result is

Ap a*b? (1 5 zz)
V= (1= == )
2nl @ +b? a® b

1 The dependence of Q on Ap and R given by this formula was established empirically by G. Hagen (1839) and
J. L. M. Poiseuille (1840) and theoretically justified by G. G. Stokes (1845).

Parallel viscous flow between fixed walls is often called Poiseuille flow in the literature; equation (17.4) relates to
two-dimensional Poiseuille flow.
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The discharge is
_nAp &b’
T 4l @@+ b
PrOBLEM 3. The same as Problem 1, but for a pipe whose cross-section is an equilateral triangle with side a.
SoLuTiON. The solution of equation (17.7) which vanishes on the bounding triangle is
Ap 2

=— h hyh,,
v 17—30"‘123

where h, , h,, h, are the lengths of the perpendiculars from a given point in the triangle to its three sides. For each
of the expressions A h,, Ah,, Ahy (Where A = 8%/02% + 62 /0y?) is zero; this is seen at once from the fact that

each of the perpendiculars h, , h, , h; may be taken as the axis of y or z,and the result of applying the Laplacian to a
coordinate is zero. We therefore have

A (hyhyhy) = 2(h, grad h, - grad hy+ h, grad hy-grad h, +hygrad h, -grad h;)

But grad h, = n,, grad h, = n,, grad h, = n;, wheren, , n,, B are unit vectors along the perpendiculars h, h,,
h,.Anytwo of m,,n,,n; areat an angle 2n/3,so that grad b, -grad h, = m, -0, = cos 2n/3) = —3,and so on. We
thus obtain the relation

A (hihyhy) = — (hy +hy+hy) = —3/3a,
and we see that equation (17.7) is satisfied. The discharge is

_ V3a*Ap
T 320w

PROBLEM 4. A cylinder with radius R, moves parallel to its axis with velocity  inside a coaxial cylinder with
radius R,. Determine the motion of a fluid occupying the space between the cylinders.

SOLUTION. We take cylindrical polar coordinates, with the z-axis along the axis of the cylinders. The velocity is
everywhere along the z-axis and depends only on r (as does the pressure): v, = v(r). We obtain for v the equation

A 1 d( dv) 0
V=——\r— =V,
rdr\ dr

the term (v - grad)v = v v/0z vanishes identically. Using the boundary conditions v = ufor r = R, and v = O for
r = R,, we find

" log(r/R;)
log(R,/R;)

The frictional force per unit length of either cylinder is 2nnu/log(R,/R,).

PROBLEM 5. A layer of fluid with thickness h is bounded above by a free surface and below by a fixed plane
inclined at an angle a to the horizontal. Determine the flow due to gravity.

SOLUTION. We take the fixed plane as the xy-plane, with the x-axis in the direction of flow (Fig. 6). We seek a
solution depending only on z. The Navier-Stokes equations with v, = v(z) in a gravitational field are

d2u+ i 0 dp+ 0
—_— sina =0, — cosa=0.
”dzz Py dz pgcos a

z/

Fi1G. 6
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At the free surface (z = h) we must have o,, =ndv/dz =0, 6,,= —p= —p, (p, being the atmospheric
pressure). For z = 0 we must have v = 0. The solution satisfying these conditions is

_pgsina

P=pot+pg(h—z)cosa, v z(2h —2).
The discharge, per unit length in the y-direction, is
h
h3si
Q=p fvdz =PI sma‘
3v

0

PROBLEM 6. Determine the way in which the pressure falls along a tube of circular cross-section in which a
viscous perfect gas is flowing isothermally (bearing in mind that the dynamic viscosity n of a perfect gas is
independent of the pressure).

SoLUTION. Over any short section of the pipe the gas may be supposed incompressible, provided that the
pressure gradient is not too great, and we can therefore use formula (17.10), according to which

dp _ 81Q

dx mpRY

Over greater distances, however, p varies, and the pressure is not a linear function of x. According to the
equation of state, the gas density p = mp/T, where m is the mass of a molecule, so that

(The discharge Q of the gas through the tube is obviously the same, whether or not the gas is incompressible.)
From this we find
.2 _16n0T,

P2 —p s
2 ! nmR*

where p,, p, are the pressures at the ends of a section of the tube with length [.

§18. Flow between rotating cylinders

Let us now consider the motion of a fluid between two infinite coaxial cylinders with
radii R, R, (R, > R,), rotating about their axis with angular velocities Q,, Q,.} We take
cylindrical polar coordinates r, ¢, z, with the z-axis along the axis of the cylinders. It is
evident from symmetry that

v,=0,=0, vy = v(r), p=p(r).
The Navier-Stokes equation in cylindrical polar coordinates gives in this case two
cquations: dp/dr = pv*/r, (18.1)

d?v 1dv v
Ty I_Z =0 18.2
dr? + rdr r? 0 (18:2)
The latter equation has solutions of the form 7”; substitution gives n = + 1, so that

b

v=ar+-.
r

The constants a and b are found from the boundary conditions, according to which the
fluid velocity at the inner and outer cylindrical surfaces must be equal to that of the

t Flow between rotating cylinders is often called Couette flow in the literature (M. Couette 1890). In the Limit
R, — R,,it becomes the flow (17.1) between moving parallel planes, referred to as two-dimensional Couette flow.

FM-C*
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correspondingcylinder:v = R, Q, forr = R;,v = R,Q, forr = R,.Asaresult we find the
velocity distribution to be

o= QRI-QUR?(Q—Q,)R R, 1

~ Ry2-R}? R,2—R;?> 1

(18.3)

The pressure distribution is then found from (18.1) by straightforward integration.
For Q, = Q, = Qwe have simply v = Qr, i.e. the fluid rotates rigidly with the cylinders.
When the outer cylinder is absent (Q, = 0, R, = c0) we have v = Q, R,?/r.
Let us also determine the moment of the frictional forces acting on the cylinders. The
frictional force acting on unit area of the inner cylinder is along the tangent to the surface
and, from (15.14), is equal to the component ¢’,, of the stress tensor. Using formulae

(15.17), we find
, ov v
[06)r<r, = '7[(5; _;>:|r=Rl

@~ )R,

The moment of this force is found by multiplying by R, , and the total moment M, acting
on unit length of the cylinder by multiplying the result by 2zR,. We thus have

4nn(Q, — Qz)Rlszz

M, = 18.4

1 R22 _ Rl 2 ( )

The moment of the forces acting on the outer cylinder is M, = —M,. When Q, = 0 and
the gap between the cylinders is small (6 = R, — R, < R,), (18.4) becomes

M, =nRSu/é, (18.5)

where S ~ 2R is the surface area of the cylinder per unit length, and u = Q, R is its
peripheral velocity.t

The following general remark may be made concerning the solutions of the equations of
motion of a viscous fluid which we have obtained in §§17 and 18. In all these cases the non-
linear term (v-grad)v in the equations which determine the velocity distribution is
identically zero, so that we are actually solving linear equations, a fact which very much
simplifies the problem. For this reason all the solutions also satisfy the equations of motion
for an incompressible ideal fluid, say in the form (10.2) and (10.3). This is why formulae
(17.1) and (18.3) do not contain the viscosity coefficient at all. This coefficient appears only
in formulae, such as (17.9), which relate the velocity to the pressure gradient in the fluid,
since the presence of a pressure gradient is due to the viscosity; an ideal fluid could flow in a
pipe even if there were no pressure gradient.

§19. The law of similarity

In studying the motion of viscous fluids we can obtain a number of important results
from simple arguments concerning the dimensions of various physical quantities. Let us

1 The solution of the more complex problem of the motion of a viscous fluid in a narrow space between
cylinders whose axes are parallel but not coincident may be found in: N. E. Kochin, I. A. Kibel’and N. V. Roze.
Theoretical Hydromechanics (Teoreticheskaya gidromekhanika), Part 2, p. 534, Moscow 1963; A. Sommerfeld,
Mechanics of Deformable Bodies, §36, New York 1950.
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consider any particular type of motion, for instance the motion of a body of some definite
shape through a fluid. If the body is not a sphere, its direction of motion must also be
specified: e.g. the motion of an ellipsoid in the direction of its greatest or least axis.
Alternatively, we may be considering flow in a region with boundaries having a definite
form (a pipe with given cross-section, etc.).

In such a case we say that bodies of the same shape are geometrically similar; they can be
obtained from one another by changing all linear dimensions in the same ratio. Hence, if
the shape of the body is given, it suffices to specify any one of its linear dimensions (the
radius of a sphere or of a cylindrical pipe, one semi-axis of a spheroid with given
eccentricity, and so on) in order to determine its dimensions completely.

We shall at present consider steady flow. If, for example, we are discussing flow past a
solid body (which case we shall take below, for definiteness), the velocity of the main
stream must therefore be constant. We shall suppose the fluid incompressible.

Of the parameters which characterize the fluid itself, only the kinematic viscosity
v =n/p appears in the equations of hydrodynamics (the Navier-Stokes equations); the
unknown functions which have to be determined by solving the equations are the velocity v
and the ratio p/p of the pressure p to the constant density p. Moreover, the flow depends,
through the boundary conditions, on the shape and dimensions of the body moving
through the fluid and on its velocity. Since the shape of the body is supposed given, its
geometrical properties are determined by one linear dimension, which we denote by I. Let
the velocity of the main stream be ». Then any flow is specified by three parameters, v, u and
I. These quantities have the following dimensions:

v = cm?/sec, | = cm, u = cm/sec.

It is easy to verify that only one dimensionless quantity can be formed from the above
three, namely ul/v. This combination is called the Reynolds number and is denoted by R:

R = pul/n = ul/v. (19.1)

Any other dimensionless parameter can be written as a function of R.

We shall now measure lengths in terms of /, and velocities in terms of u, i.e. we introduce
the dimensionless quantities (r/l, v/u. Since the only dimensionless parameter is the
Reynolds number, it is evident that the velocity distribution obtained by solving the
equations of incompressible flow is given by a function having the form

v =uf(r/LR). (19.2)

It is seen from this expression that, in two different flows of the same type (for example,
flow past spheres with different radii by fluids with different viscosities), the velocities v/u
are the same functions of the ratio r/! if the Reynolds number is the same for each flow.
Flows which can be obtained from one another by simply changing the unit of
measurement of coordinates and velocities are said to be similar. Thus flows of the same
type with the same Reynolds number are similar. This is called the law of similarity (O.
Reynolds 1883).

A formula similar to (19.2) can be written for the pressure distribution in the fluid. Todo
so, we must construct from the parameters v, [, u some quantity with the dimensions of
pressure divided by density; this quantity can be u?, for example. Then we can say that
p/pu? is a function of the dimensionless variable r/! and the dimensionless parameter R.
Thus

p = pu® f (r/LR). (19.3)
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Finally, similar considerations can also be applied to quantities which characterize the
flow but are not functions of the coordinates. Such a quantity is, for instance, the drag force
F acting on the body. We can say that the dimensionless ratio of F to some quantity formed
from v, u, I, p and having the dimensions of force must be a function of the Reynolds
number alone. Such a combination of v, u, I, p can be pu?l?, for example. Then

F = pu?l2 f(R). (19.4)

If the force of gravity has an important effect on the flow, then the latter is determined
not by three but by four parameters, [, u, v and the acceleration g due to gravity. From these
parameters we can construct not one but two independent dimensionless quantities. These
can be, for instance, the Reynolds number and the Froude number, which is

F = u?/lg. (19.5)

In formulae (19.2)-(19.4) the function f will now depend on not one but two parameters (R
and F), and two flows will be similar only if both these numbers have the same values.

Finally, we may say a littleregarding non-steady flows. A non-steady flow of a given type
is characterized not only by the quantities v, u, [ but also by some time interval t©
characteristic of the flow, which determines the rate of change of the flow. For instance, in
oscillations, according to a given law, of a solid body, of a given shape, immersed in a fluid,
7 may be the period of oscillation. From the four quantities v, u, I, T we can again construct
two independent dimensionless quantities, which may be the Reynolds number and the

number S = ut/l, (19.6)

sometimes called the Strouhal number. Similar motion takes place in these cases only if
both these numbers have the same values.

If the oscillations of the fluid occur spontaneously (and not under the action of a given
external exciting force), then for motion of a given type S will be a definite function of R:

S = f(R).

§20. Flow with small Reynolds numbers

The Navier—Stokes equation is considerably simplified in the case of flow with small
Reynolds numbers. For steady flow of an incompressible fluid, this equation is

(v-grad)v = —(1/p)gradp +(n/p)Av.

The term (v - grad)vis of the order of magnitude of u?/I, uand | having the same meaning as
in §19. The quantity (n/p) A vis of the order of magnitude of nu/pl*. Theratio of the two is
just the Reynolds number. Hence the term (v - grad)v may be neglected if the Reynolds
number is small, and the equation of motion reduces to a linear equation

n/Av—gradp = 0. (20.1)

Together with the equation of continuity
divv=20 (20.2)

it completely determines the motion. It is useful to note also the equation
A curlv =0, (20.3)
which is obtained by taking the curl of equation (20.1).
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As an example, let us consider rectilinear and uniform motion of a sphere in a viscous
fluid (G. G. Stokes 1851). The problem of the motion of a sphere, it is clear, is exactly
equivalent to that of flow past a fixed sphere, the fluid having a given velocity u at infinity.
The velocity distribution in the first problem is obtained from that in the second problem
by simply subtracting the velocity u; the fluid is then at rest at infinity, while the sphere
moves with velocity — u. If we regard the flow as steady, we must, of course, speak of the
flow past a fixed sphere, since, when the sphere moves, the velocity of the fluid at any point
in space varies with time.

Since div(v —u) = div v = 0, v—u can be expressed as the curl of some vector A:

v—u = curl A,

with curl A equal to zero at infinity. The vector A must be axial, in order for its curl to be
polar, like the velocity. In flow past a sphere, a completely symmetrical body, there is no
preferred direction other than that of u. This parameter u must appear linearly in A,
because the equation of motion and its boundary conditions are linear. The general form
of a vector function A(r) satisfying all these requirements is A = f” (r)n X u, where n is a
unit vector parallel to the position vector r (the origin being taken at the centre of the
sphere), and f’ (r) is a scalar function of r. The product f” (r)n can be represented as the
gradient of another function f(r). We shall thus look for the velocity in the form

v = u+ curl (grad X u) = u + curl curl (fu); (20.4)

the last expression is obtained by noting that u is constant.
To determine the function f, we use equation (20.3). Since

curl v = curl curl curl( fu) = (grad div — A) curl( fu)
= — A curl( fu),

(20.3) takes the form A2 curl(fu) = A?(grad fxu) = (A 2gradf)xu = 0. It follows from
this that

NZgrad f = 0. (20.5)
A first integration gives
A%f = constant.

It is easy to see that the constant must be zero, since the velocity difference v —u must
vanish at infinity, and so must its derivatives. The expression AZ2f contains fourth
derivatives of f, whilst the velocity is given in terms of the second derivatives of f. Thus we
have
,._ 1 df ,d _
NS = rzdr<r dr)Af_ 0.
Hence
Af=2a/r+-c.

The constant ¢ must be zero if the velocity v — uis to vanish at infinity. From A f = 2a/r we
obtain
f=ar+b/r. (20.6)

The additive constant is omitted, since it is immaterial (the velocity being given by
derivatives of f).
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Substituting in (20.4), we have after a simple calculation

u+n(u-n)+b3n(u~n)—u (20.7)
3 . .

r r

The constants a and b have to be determined from the boundary conditions: at the
surface of the sphere (r = R), v =0, i.e.

a b 1 n(u-n) ——£+3b =0
u E + R3 +n(u RTR = .
Since this equation must hold for all n, the coefficients of u and n(u - n) must each vanish.
Hence a = 3R, b = 1R3. Thus we have finally

f=2Rr+1iR3/r, (20.8)
v = _%R“_’Z':Lm_%R3“_1§:‘3(“_m)+u, (20.9)

or, in spherical polar components with the axis parallel to u,

3R R?
U, = uUCos 0[1 ——+—],

2r  2r3
3R R (20.10)
Vg = —uUSsin 9[1 —zr——z;;:l.

This gives the velocity distribution about the moving sphere. To determine the pressure,
we substitute (20.4) in (20.1):

gradp = nAv = n/curl curl (fu)
= n/A (grad div (fu)—uAf).

But A?f=0, and so

grad p = grad[nAdiv(fu)] = grad(nu-grad A f).
Hence
p = nu-grad A f+ p,, (20.11)

where p, is the fluid pressure at infinity. Substitution for fleads to the final expression

u-n
P="Do —%n—;z—R. (20.12)

Using the above formulae, we can calculate the force F exerted on the sphere by the
moving fluid (or, what is the same thing, the drag on the sphere as it moves through the
fluid). To do so, we take spherical polar coordinates with the axis parallel to u; by
symmetry, all quantities are functions only of r and of the polar angle 6. The force F is
evidently parallel to the velocity u. The magnitude of this force can be determined from
(15.14). Taking from this formula the components, normal and tangential to the surface, of
the force on an element of the surface of the sphere, and projecting these components on
the direction of u, we find

F = § (—pcosf+a',,cos0—o',,sin6)df, (20.13)

where the integration is taken over the whole surface of the sphere.
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Substituting the expressions (20.10) in the formulae

v 10v, OJv, Ug)

r
s [—

o =25, ""’='7(7ao+ar r
(see (15.20)), we find that at the surface of the sphere
d, =0, 6,0 = — (3n/2R)usin 0,

while the pressure (20.12)is p = p, — (3n7/2R)u cos 6. Hence the integral (20.13) reduces to
F = (3nu/2R) § df. In this way we finally arrive at Stokes’ formula for the drag on a sphere
moving slowly in a fluid:

F = 6nnRu. (20.14)

The drag is proportional to the velocity and linear size of the body. This could have been
foreseen from dimensional arguments: the fluid density p does not appear in the
approximate equations (20.1), (20.2), and so the force F which they give must be expressed
only in terms of 7, u and R; from these, only one combination with the dimensions of force
can be formed, namely the product nRu.

A similar dependence occurs for slowly moving bodies with other shapes. The direction
of the drag on a body of arbitrary shape is not the same as that of the velocity; the general
form of the dependence of F on u can be written

F; = nayu, (20.15)

where a;, 1s a tensor of rank two, independent of the velocity. It is important to note that
this tensor is symmetrical, a result which holds in the linear approximation with respect to
the velocity, and is a particular case of a general law valid for slow motion accompanied by
dissipative processes (see SP1, §121).

REFINEMENT OF STOKES' FORMULA

The above solution of the problem of flow past a sphere is not valid at large distances,
even if the Reynolds number is small. To see this, let us estimate the term (v-grad)v
neglected in (20.1). At large distances, v = u; the velocity derivatives there are of the order
of uR/r?,asis seen from (20.9). Hence (v-grad)v ~ u>R/r?. The terms retained in (20.1) are
of the order of 7Ru/pr3, as can be seen from the same expression (20.9) for the velocity or
(20.12) for the pressure. The condition nRu/pr® > u?R/r? is satisfied only for distances
such that

r<vju. (20.16)

At greater distances, the terms neglected are not negligible, and the velocity distribution so
found is incorrect.

+ With a view to later applications, it may be mentioned that calculations with (20.7) and the constants aand b
undetermined give

F = 8nnau. (20.14a)

The drag can also be calculated for a slowly moving ellipsoid with any shape. The relevant formulae are given
by H. Lamb, Hydrodynamics, 6th ed., §339, Cambridge 1932. Here we shall give the limiting expressions for a
plane circular disk with radius R moving perpendicular to its plane:

F = 16nRuy,
and for a similar disk moving in its plane:

F = 32nRu/3.
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To find the velocity distribution at large distances from the body, we have to include the
term (v-grad)v omitted from (20.1). Since at these distances v is almost the same as u, we
can approximately replace v-grad by u-grad. We then find for the velocity at large
distances the linear equation

(u-grad)v = —(1/p) grad p+ vAv (20.17)

(C. W. Oseen 1910). We shall not pause to give here the procedure for solving this equation
for flow past a sphere,  but merely mention that the velocity distribution thus obtained can
be used to derive a more accurate formula for the drag on the sphere, which includes the
next term in the expansion of the drag in powers of the Reynolds number R = uR/v:

F = 6nnuR (1 +3uR/8v). (20.18)

In solving the problem of flow past an infinite cylinder at right angles to its axis, Oseen’s
equation has to be used from the start; the equation (20.1) has in this case no solution
satisfying the boundary conditions at the surface of the cylinder and also at infinity. The
drag per unit length of the cylinder is found to be

_ 4nnu o 4nnu
~1_C-log (uR/4v)  log(3-70v/uR)’

where C = 0-577 . . . is Euler’s constant (H. Lamb 1911).}

Another comment should be made regarding the problem of flow past a sphere. The
replacement of v by u in the non-linear term in (20.17) is valid at large distances from the
sphere, r > R. It is therefore natural that Oseen’s equation, while correctly refining the
picture of flow at large distances, does not do the same at short distances. This is evident
from the fact that the solution of (20.17) which satisfies the necessary conditions at infinity
does not satisfy the exact condition that the velocity be zero on the surface of the sphere,
which is met only by the zero-order term in the expansion of the velocity in powers of the
Reynolds number and not even by the first-order term.

It might therefore seem at first sight that the solution of Oseen’s equation cannot be
used for a valid calculation of the correction term in the drag. This is not so, however, for
the following reason. The contribution to F from the motion of the fluid at short distances
(for which u < v/r) has to be expandable in powers of u. The first non-zero correction term
in the vector F arising from this contribution therefore has to be proportional to uu?, and
gives a second-order correction relative to the Reynolds number; it thus does not affect the
first-order correction in (20.18).

Further corrrections to Stokes’ formula and a valid refinement of the flow pattern at
short distances can not be obtained by a direct solution of (20.17). Although these
refinements themselves are not very important, there is considerable methodological
interest in deriving and analysing a consistent perturbation theory for solving problems of
viscous flow at small Reynolds numbers (S. Kaplun and P. A. Lagerstrom 1957; I.

F

(20.19)

t It is given by N. E. Kochin, L. A. Kibel’ and N. V. Roze, Theoretical Hydromechanics (Teoreticheskaya
gidromekhanika), Part 2, chapter II, §§25-26, Moscow 1963; H. Lamb, Hydrodynamics, 6th ed., §§342-3,
Cambridge 1932.

1 The impossibility of calculating the drag in the cylinder problem by means of (20.1) is evident from
dimensional arguments. As already mentioned, the result would have to be expressed in terms of 7, uand R, butin
this case we are concerned with the force per unit length of the cylinder, and the only quantity having the right
dimensions would be nu, which is independent of the size of the body and therefore does not vanish as R — 0; this
is physically absurd.
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Proudman and J. R. A. Pearson 1957). We shall describe the existing situation and give all
expressions needed to illustrate it, without going through the calculations in detail. t

To show explicitly the small parameter R, the Reynolds number, we use the
dimensionless velocity and position vector v/ = v/u,r’ = r/R, and in the rest of this section
denote them by v and r without the primes. The exact solution of the equation of motion
(which we take in the form (15.10) with the pressure eliminated) is then

R curl (vxcurl v)+ A curl v =0. (20.20)

We distinguish two regions of space around the sphere: the near region with r € 1/R,
and the far region with r> 1. These together cover all space, overlapping in the
intermediate range

I/R>r> 1. (20.21)

In a consistent perturbation theory, the initial approximation in the near region is the
Stokes approximation, i.e. the solution of the equation A curl v = 0 obtained from (20.20)
by neglecting the term which contains the factor R. This solution is given by formulae
(20.10); in dimensionless variables, it is

3 1 . 3 1
v,‘” = COS 0(1—54-?), Ue(l) = —sm()(l—a—ﬁ),
r<1/R, (20.22)

the superscript (1) denoting the first approximation.

The first approximation in the far region is simply the constant v!> = v corresponding
to the unperturbed uniform incoming flow (v being a unit vector in the direction of the
flow). Substitution of v = v+v*?) in (20.20) gives for v'® Oseen’s equation

R curl (v x curl v¥) + A curl v'? = 0. (20.23)

The solution must satisfy the condition that the velocity v‘®) be zero at infinity and the
condition for joining to the solution (20.22) in the intermediate range. The latter excludes,
in particular, solutions that increase too rapidly with decreasing r.J The appropriate
solution is

3
v,V +0,@ = cos 0+2 2R {1—[1+3rR(1 +cos )]e—#Rl—cos6)}
r
(1) ) . 3 . _JrR(1 —cos
Vg ' +Vg " = —sIn 0+Esm e —IrR(1 —cosd)
r>1. (20.24)

t These may be found in M. Van Dyke, Perturbation Methods in Fluid Mechanics, New York 1964. The
calculations there are given not in terms of the velocity v(r) but in the more compact, less visualizable,
terminology of the stream function. For axially symmetrical flow, including flow past a sphere, the stream
function ¥(r, 0) in spherical polar coordinates is defined by

b =gr ¥
" r?sin606’
1 oy
= b
These satisfy identically the continuity equation (15.22).

1 Todetermine the numerical coefficients in the solution, we have also to take account of the condition that the
total amount of fluid passing through any closed surface around the sphere must be zero.

= 0.
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Note that the variable for the far region is really the product p = rR, not the radial
coordinate r itself. When this variable is used, R disappears from (20.20), in accordance
with the fact that when r 2 1/R the viscous and inertia terms in the equation become
comparable in order of magnitude. The number R occurs in the solution only through the
boundary condition for joining to that in the near region. The expansion of v(r) in the far
region is therefore an expansion in powers of R for given values of p = rR, since the second
terms in (20.24), when expressed in terms of p, contain R as a factor.

To test the correctness of joining for the solutions (20.22) and (20.24), we observe that in
the intermediate range (20.21) rR < 1 and the expressions (20.24) can be expanded in
powers of this variable. As far as the first two terms (apart from the uniform flow), we have

3 3R
= 1—— )+ -
v, cos()( 2r>+ 16( cosb) (1 +3cos ),

(20.25)
) 3 3R .
vg= —sinf|1—— )——sin (1 —cos 0).
4r 8
In the same range, on the other hand, r > 1 and therefore we can omit the termsin 1/r3 in
(20.22); the remaining terms are the same as the first terms in (20.25), and the second terms
there will be made use of later.
On going to the next approximation in the near region, we write v = v + v/? and
obtain from (20.20) an equation for the correction in the second approximation:

A curl v = —R curl (v x curl v'V), (20.26)

The solution of this equation must satisfy the condition of vanishing on the surface of the
sphere and that of joining to the solution in the far region; the latter means that the leading
terms in the function v'* (r) when r > 1 must agree with the second terms in (20.25). The
appropriate solution is

3R 3R 1\? 1
0, ="M +_(1 _;) (2 +- +ri2) (1 -3 cos? 6),

8 32
3R 3R 1 1 1 2
@22, m 2 2 =4+ )i
vy g o +32<1 r><4+r+r2+r3>sm0cos(),
r<1/R. (20.27)

In the intermediate region, only the terms without a factor 1/r remain in these expressions,
and they do in fact agree with the second terms in (20.25).

From the velocity distribution (20.27), we can calculate the correction to Stokes’
formula for the drag. The second terms in (20.27), because of their angular dependence, do
not contribute to the drag; the first terms give the correction 3R/8 shown in (20.18).
According to the above discussion, the exact velocity distribution near the sphere leads in
this approximation to the same result for the drag as the solution of Oseen’s equation.

The next approximation can be obtained by continuing the procedure described. It
involves logarithmic terms in the velocity distribution; in the expression (20.18) for the
drag, the brackets are replaced by

3 9
“R-——_R? R
1+8R 0 log (1/R),

the logarithm being assumed large. }

t See L. Proudman and J. R. A. Pearson, Journal of Fluid Mechanics 2, 237, 1957.
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PROBLEMS

PROBLEM 1. Determine the motion of a fluid occupying the space between two concentric spheres with radii
R;, R; (R; > R,), rotating uniformly about different diameters with angular velocities Q,, Q,; the Reynolds
numbers Q, R ,%/v, Q,R,?/v are small compared with unity.

SoLUTION. On account of the linearity of the equations, the motion between two rotating spheres may be
regarded as a superposition of the two motions obtained when one sphere is at rest and the other rotates. We first
put Q, = 0,i.c. only the inner sphere is rotating. It is reasonable to suppose that the fluid velocity at every point is
along the tangent to a circle in a plane perpendicular to the axis of rotation with its centre on the axis. On account
of the axial symmetry, the pressure gradient in this direction is zero. Hence the equation of motion (20.1) becomes
Av = 0. The angular velocity vectorQ, is an axial vector. Arguments similar to those given previously show that
the velocity can be written as

v=cwrl[ f(r)Q,] = gradfxQ,.

The equation of motion then gives grad /A fXQ; = 0. Since the vector grad A fis parallel to the position vector,
and the vector product r X Q, cannot be zero for given Q, and arbitrary r, we must have grad A\ f = 0, so that

A f = constant.

Integrating, we find
b b
f=ar? t, V= (?3 - 2a>al Xr.

The constants a and b are found from the conditions that v = Oforr = R,and v = uforr = R,,whereu = Q, xr
is the velocity of points on the rotating sphere. The result is

R.3R;? (1 1
V=——31—“2—%3 =35 3 ler.
Rz _Rl r Rz

The fluid pressure is constant (p = p,). Similarly, we have for the case where the outer sphere rotates and the inner

one is at rest (Q, = 0)
R R} 1 1
V= ! 2 -—3‘>sz[.
R23—R13 R13 r

In the general case where both spheres rotate, we have

R’R;? {(1 1 > < 1 1) }
=—F | 53— )Q;Xr+| — —— )Q, xr ;.
v R23_R13 r3 R23 1 Xr R13 r3 2
If the outer sphere is absent (R, = o0, Q, = 0),1.e. we have simply a sphere with radius R rotating in an infinite
fluid, then
v=(R3/r*)Qxr.

Let us calculate the moment of the frictional forces acting on the sphere in this case. If we take spherical polar
coordinates with the polar axis parallel to Q, we have v, = vy = 0,v, = v = (R?Q/r?)sin 0. The frictional force on
unit area of the sphere is

0
0= n(_v_z;_) = —3nQsind.
or r/,_r

The total moment on the sphere is
M= ja’,¢R sin#.2nR%sin0d6,
0

whence we find
M = —8anR3Q.

If the inner sphere is absent, v = Q, Xr, i.c. the fluid simply rotates rigidly with the sphere surrounding it.

PROBLEM 2. Determine the velocity of a spherical drop of fluid (with viscosity ') moving under gravity in a
fluid with viscosity n (W. Rybczynski 1911).



66 Viscous Fluids §20

SOLUTION. We use a system of coordinates in which the drop is at rest. For the fluid outside the drop we again
seek a solution of equation (20.5) in the form (20.6), so that the velocity has the form (20.7). For the fluid inside the
drop, we have to find a solution which does not have a singularity at r = 0 (and the second derivatives of f, which
determine the velocity, must also remain finite). This solution is

f=1%1Ar*+1Br¢,
and the corresponding velocity is
V= — Au+ Br’[n(u‘n)—2u].

At the surface of the sphere the following conditions must be satisfied. The normal velocity components outside
(v.) and inside (v;) the drop must be zero:

vi.l = ve,r = 0'
The tangential velocity component must be continuous:
Vi, = Vg0
as must be the component a,, of the stress tensor:
oi,ro = ae,ro'

The condition that the stress tensor components ¢,, be equal need not be written down; it would determine the
required velocity u, which is more simply found in the manner shown below. From the above four conditions we
obtain four equations for the constants a, b, A, B, whose solutions are

2 3 !’ ’
RAEM -y _p T 4= _prr=_T
4in+1€) 4n+1€) 2(n+7')

By (20.14a), we have for the drag

F =2nunRQ2n+3n)/(n+n).

As n' — oo (corresponding to a solid sphere) this formula becomes Stokes’ formula. In the limit ' -0
(corresponding to a gas bubble) we have F = 4nunR, i.e the drag is two-thirds of that on a solid sphere.
Equating F to the force of gravity on the drop, $nR>(p — p’)g, we find

_2R%’g(p—p)n+1)
3n(2n+3n)

PRrOBLEM 3. Two parallel plane circular disks (with radius R) lie one above the other a small distance apart; the
space between them s filled with fluid. The disks approach at a constant velocity u, displacing the fluid. Determine
the resistance to their motion (O. Reynolds).

SOLUTION. We take cylindrical polar coordinates, with the origin at the centre of the lower disk, which we
suppose fixed. The flow is axially symmetric and, since the fluid layer is thin, predominantly radial: v, < v,, and
also 0v,/0r < 0v,/0z. Hence the equations of motion become

o*v, dp op _

Toz2 “or oz 0, 1)
with the boundary conditions
atz =0 v,=v,=0;
atz=h: v, =0, v, = — U
atr=R: P = Do

1 We may neglect the change of shape of the drop in its motion, since this change is of a higher order of
smallness. However, it must be borne in mind that, in order that the moving drop should in fact be spherical, the
forces due to surface tension at its boundary must exceed the forces due to pressure differences, which tend to
make the drop non-spherical. This means that we must have nu/R < a/R, where a is the surface-tension
coeflicient, or, substituting u ~ R2gp/n,

R <./(a/pg)-
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where h is the distance between the disks, and p, the external pressure. From equations (1) we find

1dp
=——z(z—h).
Or 2r7drz(z )

Integrating equation (2) with respect to z, we obtain

h

1d d h? d< dp
=-—\mdz= ———|r—
“=rar) 129rdr "ar)

whence
3nu
P=Do +’hT(R2 —r).

The total resistance to the moving disk is

F = 3nnuR*/2h3.

§21. The laminar wake

In steady flow of a viscous fluid past a solid body, the flow at great distances behind the
body has certain characteristics which can be investigated independently of the particular
shape of the body.

Let us denote by U the constant velocity of the incident current; we take the direction of
U as the x-axis, with the origin somewhere inside the body. The actual fluid velocity at any
point may be written U + v; v vanishes at infinity.

It is found that, at great distances behind the body, the velocity v is noticeably different
from zero only in a relatively narrow region near the x-axis. This region, called the laminar
wake,t is reached by fluid particles which move along streamlines passing fairly close to the
body. Hence the flow in the wake is essentially rotational. The reason is that rotational flow
of a viscous fluid past a solid body is due to the surface of the body.$ This is easily seen if we
recall that, in the pattern of potential flow for an ideal fluid, only the normal velocity
component is zero on the surface of the body, not the tangential component v,. The
boundary condition of adhesion for a real fluid makes v, also zero, however. If the pattern
of potential flow were maintained, this would cause a non-zero discontinuity of v,, i.e. the
occurrence of a surface vorticity. The viscosity smooths out the discontinuity, and the
rotational state penetrates into the fluid, from which it passes by convection into the wake
region.

On the other hand, the viscosity has almost no effect at any point on streamlines that do
not pass near the body, and the vorticity, which is zero in the incident current, remains
practically zero on these streamlines, as it would in an ideal fluid. Thus the flow at great
distances from the body may be regarded as potential flow everywhere except in the wake.

We shall now derive formulae relating the properties of the flow in the wake to the forces
acting on the body. The total momentum transported by the fluid through any closed
surface surrounding the body is equal to the integral of the momentum flux density tensor
over that surface, §11,df,. The components of the tensor Il are

Il = poy + p(U; + v)(Uy + vy).

+ In contradistinction to the turbulent wake; see §37.
t The fact that the relation curl v = 0 does not remain valid along a streamline which passes over a solid
surface has already been noted (§9).
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We write the pressure in the form p = p, + p’, where p, is the pressure at infinity. The
integration of the constant term p,d;, + pU,U, gives zero, since the vector integral § df over
a closed surface is zero. The integral § pv, df; also vanishes: since the total mass of fluid in
the volume considered is constant, the total mass flux through the surface surrounding the
volume must be zero. Finally, the velocity v far from the body is small compared with U.
Hence, if the surface in question is sufficiently far from the body, we can neglect the term
pv;v, in I, as compared with pU,v;. Thus the total momentum flux is

§ (P'0u + pUiv;)d .

Let us now take the fluid volume concerned to be the volume between two infinite planes
x = constant, one of them far in front of the body and the other far behind it. The integral
over the infinitely distant “lateral” surface vanishes (since p’ = v = 0 at infinity), and it is
therefore sufficient to integrate only over the two planes. The momentum flux thus
obtained is evidently the difference between the total momentum flux entering through the
forward plane and that leaving through the backward plane. This difference, however, is
just the quantity of momentum transmitted to the body by the fluid per unit time, i.e. the
force F exerted on the body.

Thus the components of the force F are

Fx=( - )(p’+vax)dydz,

F, =< - )vaydydz,

v v
X=X, X=X,
~r ~r
F,= ( — )va,dydz,
oo oo
X=X, X=X

where the integration is taken over the infinite planes x = x; (far behind the body) and
x = x, (far in front of it). Let us first consider the expression for F,.
Outside the wake we have potential flow, and therefore Bernoulli’s equation

p+3p(U+v)? = constant = p,+31pU?
holds, or, neglecting the term $pv? in comparison with pU-v,
p, = - pUUx'

We see that in this approximation the integrand in F, vanishes everywhere outside the
wake. In other words, the integral over the plane x = x, (which lies in front of the body and
does not intersect the wake) is zero, and the integral over the plane x = x; need be taken
only over the area covered by the cross-section of the wake. Inside the wake, however, the
pressure change p’ is of the order of pv?, i.e. small compared with pUv,. Thus we reach the
result that the drag on the body is

F,=-pU ijxdydz, (21.1)

where the integration is taken over the cross-sectional area of the wake far behind the
body. The velocity v, in the wake is, of course, negative: the fluid moves more slowly than it
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would if the body were absent. Attention is called to the fact that the integral in (21.1) gives
the amount by which the discharge through the wake falls short of its value in the absence
of the body.

Let us now consider the force (whose components are F,, F,) which tends to move the
body transversely. This force is called the lift. Outside the wake, where we have potential
flow, we can write v, = 0¢/0y, v, = 0¢/0z; the integral over the plane x = x,, which does
not meet the wake, is zero:

j]v,,dydz = ffg—fdydz =0, fji—f dydz =0,

since ¢ = 0 at infihity. We therefore find for the lift

y=—pU ffvydydz, F,=—-pU ffv, dydz. (21.2)

The integration in these formulae is again taken only over the cross-sectional area of the
wake. If the body has an axis of symmetry (not necessarily complete axial symmetry), and
the flow is parallel to this axis, then the flow past the body has an axis of symmetry also. In
this case the lift is, of course, zero. )

Let us return to the flow in the wake. An estimate of the magnitudes of various terms in
the Navier-Stokes equation shows that the term v A v can in general be neglected at
distances r from the body such that rU/v > 1 (cf. the derivation of the opposite condition
(20.16)); these are the distances at which the flow outside the wake may be regarded as
potential flow. It is not possible to neglect that term inside the wake even at these distances,
however, since the transverse derivatives 0°v/0y?, §*v/0z* are large compared with 62v/dx>.

Let Y be of the order of magnitude of the width of the wake, i.e. the distances from the x-
axis at which the velocity v falls off markedly. The order of magnitude of the terms in the
Navier—Stokes equation is then

(v-grad)v ~ U dv/ox ~ Uv/x, vAv~ vd*v/oy? ~ vo/Y>2
If these two magnitudes are comparable, we find

Y=/(vx/U). (21.3)

This quantity is in fact small compared with x, by the assumed condition Ux/v> 1. Thus
the width of the laminar wake increases as the square root of the distance from the body.
In order to determine how the velocity decreases with increasing x in the wake, we return
to formula (21.1). The region of integration has an area of the order of Y2. Hence the
integral can be estimated as F, ~ pUvY?, and by using the relation (21.3) we obtain

v~ F, /pvx. (21.4)

Having thus elucidated the qualitative features of laminar flow far from the body, we
will now derive some quantitative formulae describing the flow pattern inside and outside
the wake.

FLOW INSIDE THE WAKE
In the Navier—Stokes equation for steady flow,

(v-grad)v= —grad (p/p)+vAv, (21.5)

we use far from the body Oseen’s approximation, replacing the term (v-grad)v by
(U - grad)y; cf. (20.17). Furthermore, inside the wake the derivative with respect to the
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longitudinal coordinate x in Av can be neglected in comparison with the transverse
derivatives. We thus start from the equation

ov o*v  0%v
U_—= —grad —+=— ) 21.6
ax gra (p/p)+v(ay2+azz) ( )
We seek the solution of this in the form v = v, + v,, where v, is the solution of
ov, o%v, 0%,
— =v| = . 21.7
v 0 v(@y2 oz (21.7)

The quantity v, arising from the term — grad (p/p) in the initial equation (21.6) may be
sought as the gradient of a scalar ®@.} Since, far from the body, the derivatives with respect
to x are small in comparison with those with respect to y and z, in the approximation
considered we may neglect the term 0®/0x, i.e. take v, = v,,. We thus have for v, the

equation 5 , ,
v, 0*v, 0%v,
U—a; = V<ay2 +F£§‘). (218)

This is formally the same as the two-dimensional equation of heat conduction, with x/U
in place of the time, and the viscosity v in place of the thermometric conductivity. The
solution which decreases with increasing y and z (for fixed x) and gives an infinitely narrow
wake as x — 0 (in this approximation the dimensions of the body are regarded as small) is
(cf. §51)

- F. 2, ,2
v, = dmpvs exp { — U(y* + z%)/4vx}. (21.9)

The constant coefficient in this formula is expressed in terms of the drag by means of
formula (21.1), in which the integration may be extended over the whole yz-plane because
of the rapid convergence. If the Cartesian coordinates are replaced by spherical polar
coordinates r, 8, ¢ with the polar axis along the x-axis, then the region of the wake,
(7 +2%) < x, corresponds to 6 < 1. In these coordinates, formula (21.9) becomes

F
= - X - 02 . .
v, - exp { — Ur6?/4v} (21.10)

The term in 0®/0x (with ® given by formula (21.12) below), which we have omitted, would
give a term in v, which contains an additional small factor 6.

The form of v, ,and v, , must be the same as (21.9) but with different coefficients. We take
the direction of the lift as the y-axis (so that F, = 0). According to (21.2) we have, since

® = 0 at infinity,
‘Uv}. dydz = ff(vly + 0®/0y)dydz

= ffvl,,dydz = —F,/pU,

ffulzdy dz=0.

t The velocity potential will be denoted in the rest of this section by ®, so as to distinguish it from the
azimuthal angle ¢ in spherical polar coordinates.
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It is therefore clear that v, , difffers from (21.9) in that F, is replaced by F,, and v;, = 0.
Thus we find

= F. 2, 2 _
v, = Tmpv exp { — U(y* + z%)/4vx} + 0®/0y, v, = 0D/0z. (21.11)

To determine the function ®, we proceed as follows. We write the equation of
continuity, neglecting the longitudinal derivative:

) ov, Ov i ov,
2D P (O LT Ve P,
divve o +s, (6y2 +622) "3y

Differentiating this equation with respect to x and using equation (21.7) for v, ,, we obtain
& o\ _ o,
dy?  8z%)ox  Oy\ ox

_ (& 9o,
T U\8y* 8z%) oy’

0®/0x = — (v/U)ov,,/0y.

Finally, substituting the expression for v, , (the first term in (21.11)) and integrating with
respect to x, we have

Hence

= — Fy;— y
2npU y* +2

> {exp[— U(y? + z%)/4vx] —1}; (21.12)

the constant of integration is chosen so that ® remains finite when y = z = 0. In spherical

polar coordinates (with the azimuthal angle ¢ measured from the xy-plane)
F, cos¢

= -——2- —Ur6%/4v]—1}. 21.13

ST g ([ U1} (21.13)

Itis seen from (21.11)-(21.13) that v, and v,, unlike v, ,contain terms which decrease only as

1/6* when we move away from the axis of the wake, as well as those which decrease

exponentially with increasing 6 (for a given r).

If there is no lift, the flow in the wake is axially symmetrical, and ® = 0.1

FLOW OUTSIDE THE WAKE

Outside the wake, potential flow may be assumed. Since we are interested only in the
terms in the potential ® which decrease least rapidly at large distances, we seek a solution
of Laplace’s equation

1o/,00\ 1 of. o0 1 00
= — _— —_— - —-’—'—'—_=0
L9 rZar(r ar>+rzsineae(s‘n0ae)+r2sinzea¢2

1 Thisis true, in particular, for the wake behind a sphere. In this connection it may be noted that the formulae
obtained, like (21.16) below, are in agreement with the velocity distribution (20.24) for flow at very low Reynolds

numbers. In this case, the whole of the flow pattern described is moved to very large distances r > I/R, where lis
the size of the body.
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as a sum of two terms:

a cos
o= 24559
»

1), (21.14)

r

of which the first is spherically symmetrical and belongs to the force F,, while the second is
symmetrical about the xy-plane and belongs to the force F,.
We obtain for the function f(6) the equation

d(. 4\ f _
de(su’lea‘a)—gl?l—‘é—o

The solution of this equation finite as 8 > 7 is
f=bcotio. (21.15)

The coefficient b must be determined from the condition for joining the solution to that
inside the wake. The reason is that (21.13) relates to the angle range 6 < 1, and (21.14) to
0> \/ (v/Ur). These ranges overlap when \/ (v/Ur) < 8 <€ 1, and (21.13) then becomes

__F, cos¢é
C 2mpU vl
and the second termin (21.14)is (2b/r6) cos ¢. Comparison of these expressions shows that
we must take b = F/4npU.
To determine the coefficient a in (21.14), we notice that the total mass flux through a

sphere S with large radius r equals zero, as for any closed surface. The rate of inflow
through the part S, of S intercepted by the wake is

—ﬂuxdydz = F,/pU.
So

Hence the same quantity must flow out through the rest of the surface of the sphere, i.e. we
must have

§ v-df = F /pU.
S—S,
Since S, is small compared with S, we can put

§v- df = fgradtb'df= —4ma = F,/pU, (21.16)
S S

whence a = — F, /4npU.
The complete expression for the velocity potential is thus

1
- 4npUr

(— F,+F, cos ¢ cot30), (21.17)

which gives the flow everywhere outside the wake far from the body. The potential
diminishes with increasing distance as 1/r; the velocity accordingly decreases as 1/r%. If
there is no lift, the flow outside the wake is axially symmetrical.
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§22. The viscosity of suspensions

A fluid in which numerous fine solid particles are suspended (forming a suspension) may
be regarded as a homogeneous medium if we are concerned with phenomena whose
characteristic lengths are large compared with the dimensions of the particles. Such a
medium has an effective viscosity  which is different from the viscosity 7, of the original
fluid. The value of n can be calculated for the case where the concentration of the
suspended particles is small (i.e. their total volume is small in comparison with that of the
fluid). The calculations are relatively simple for the case of spherical particles (A. Einstein
1906).

It is necessary to consider first the effect of a single solid globule, immersed in a fluid, on
flow having a constant velocity gradient. Let the unperturbed flow be described by a linear
velocity distribution )

’ Voi = Qi X (22.1)
where o, is a constant symmetrical tensor. The fluid pressure is constant:
Po = constant,

and in future we shall take p, to be zero, i.e. measure only the deviation from this constant
value. If the fluid is incompressible (div v, = 0), the sum of the diagonal elements, or trace,
of the tensor a;,, must be zero:

a; =0. (22.2)

Now let a small sphere with radius R be placed at the origin. We denote the altered fluid
velocity by v = v, + v;; v, must vanish at infinity, but near the sphere v, is not small
compared with v,. It is clear from the symmetry of the flow that the sphere remains at rest,
so that the boundary condition is v =0 for r = R.

The required solution of the equations of motion (20.1) to (20.3) may be obtained at
once from the solution (20.4), with the function fgiven by (20.6), if we notice that the space
derivatives of this solution are themselves solutions. In the present case we desire a
solution depending on the components of the tensor a; as parameters (and not on the
vector u as in §20). Such a solution is

v; = curl curl[(a-grad)f], p = noa, 0> f/ox,0x,,

where (a - grad)f denotes a vector whose components are a,0f/dx,. Expanding these
expressions and determining the constants a and b in the function f = ar + b/r so as to
satisfy the boundary conditions at the surface of the sphere, we obtain the following
formulae for the velocity and pressure:

5/R> R? R?
Uy; = E(F‘ _r—2> Ay _r—4a.iknk’ (22.3)
3
Pp=— 5'70r—3°‘ik n;n, (22.4)

where n is a unit vector in the direction of the position vector.

Returning now to the problem of determining the effective viscosity of a suspension, we
calculate the mean value (over the volume) of the momentum flux density tensor IT,,,
which, in the linear approximation with respect to the velocity, is the same as the stress
tensor — oy, :

Oy = (I/V)faide-
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Theintegration here may be taken over the volume ¥ of a sphere with large radius, which is
then extended to infinity.
First of all, we have the identity

) ov; Oy, ; 1 ov; Oy .
o fy — 5o, +— L — 4+ )+pé. V. 22.5
% = Mo (6xk 0x; ) Pou vV J{mk o <8xk ox; ) p 5"‘} d (22.5)

t

The integrand on the right is zero except within the solid spheres; since the concentration
of the suspension is supposed small, the integral may be calculated for a single sphere as if
the others were absent, and then multiplied by the concentration n of the suspension (the
number of spheres per unit volume). The direct calculation of this integral would require
an investigation of internal stresses in the spheres. We can circumvent this difficulty,
however, by transforming the volume integral into a surface integral over an infinitely
distant sphere, which lies entirely in the fluid. To do so, we note that the equation of motion
0o,/0x, = 0 leads to the identity

oy = 0(0:%,)/0x);

hence the transformation of the volume integral into a surface integral gives

Oy =MNo (b?k +‘é)+ n §{6ilxk dfi— no(v; dfy + v df) ).

We have omitted the term in p, since the mean pressure is necessarily zero; p is a scalar,
which must be given by a linear combination of the components a;,, and the only such
scalar is a; = 0.

In calculating the integral over a sphere with very large radius, only the terms of order
1/r? need be retained in the expression (22.3) for the velocity. A simple calculation gives the
value of the integral as

3
nn, - 20nR3*{50,,n;n, myn,, —oynym, §,

where the bar denotes an average with respect to directions of the unit vector n. Effecting
the averaging,t we finally have

_ ov; ov,
Oy ="MNo ((’Tx: +5;kf ) + Snoay 3 R0, (22.6)

t

The first term in (22.6), on substitution of v, from (22.1), gives 2n,a;; the first-order
small component is identically zero after averaging with respect to the directions of n, as it
should be, since the effect resides entirely in the integral separated in (22.5). Hence the
required relative correction to the effective viscosity 1 of the suspension is determined by
the ratio-of the second and first terms in (22.6). We thus obtain

n="no(l+3¢), ¢ =4nR%n/3, (22.7)

t The required mean values of products of components of the unit vector are symmetrical tensors, which can
be formed only from the unit tensor J,,. We then easily find

-1
nn, = 36,,

nnnn, = 15 (64 0im + 84 01m + Oim0y).
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where ¢ is the small ratio of the total volume of the spheres to the total volume of the
suspension.

The corresponding calculations and results become very lengthy even for a suspension
of spheroidal particles.t As an illustration, we give the numerical values of the correction
factor A in the formula

n="no(l+A¢), ¢ =4nab’n/3,
for various values of a/b, where a and b = ¢ are the semi-axes of the spheroids:

a/b 01 02 05 1-0 2 5 10
A 804 471 285 25 291 581 136

The correction increases on either side of the value a/b = 1 which corresponds to spherical
particles.

§23. Exact solutions of the equations of motion for a viscous fluid

If the non-linear terms in the equations of motion of a viscous fluid do not vanish
identically, the solving of these equations offers great difficulties, and exact solutions can
be obtained only in a very small number of cases. Such solutions are of considerable
methodological interest, if not always of physical interest (because in practice turbulence
occurs when the Reynolds number is sufficiently large).

We give below examples of exact solutions of the equations of motion for a viscous fluid.

ENTRAINMENT OF FLUID BY A ROTATING DISK
An infinite plane disk immersed in a viscous fluid rotates uniformly about its axis.
Determine the motion of the fluid caused by this motion of the disk (T. von K4rman 1921).
We take cylindrical polar coordinates, with the plane of the disk as the plane z = 0. Let
the disk rotate about the z-axis with angular velocity Q. We consider the unbounded
volume of fluid on the side z > 0. The boundary conditions are

v, =0, v, = Qr, v, =0 for z=0,

v, =0, vy =0 for z= o0.
The axial velocity v, does not vanish as z — oo, but tends to a constant negative value
determined by the equations of motion. The reason is that, since the fluid moves radially
away from the axis of rotation, especially near the disk, there must be a constant vertical

flow from infinity in order to satisfy the equation of continuity. We seek a solution of the
equations of motion in the form

v, =rQF(z;); v, =1QG(z;); v, =/ (VH(z,); o
p= —pvQP(z,), where z, =./(Q/v)z '

In this velocity distribution, the radial and azimuthal velocities are proportional to the
distance from the axis of rotation, while v, is constant on each horizontal plane.

t Inthe flow of a suspension of non-spherical particles, the presence of velocity gradients has an orienting effect
on them. The simultaneous action of orienting hydrodynamic forces and disorienting rotary Brownian motion
gives rise to an anisotropic distribution of the particles as regards their orientation in space. This, however, need
not be considered when calculating the correction to the viscosity #: the anisotropy of the orientation distribution
is itself dependent on the velocity gradients (linearly in the first approximation), and including it would give
stress tensor terms non-linear in the gradients.
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Substituting in the Navier-Stokes equation and in the equation of continuity, we obtain
the following equations for the functions F, G, H and P:

F2—G*+FH=F", 2FG+GH = G", }

(23.2)
HH = P +H", 2F+H =0;

the prime denotes differentiation with respect to z,. The boundary conditions are

F=0, G=1, H=0 for z, =0. }

233
F=0, G=0 for z;, = 0. (23.9)

We have therefore reduced the solution of the problem to the integration of a system of
ordinary differential equations in one variable; this can be achieved numerically. Figure 7
shows the functions F, G and — H thus obtained. The limiting value of H as z; — oo is
—0-886; in other words, the fluid velocity at infinity is v,(c0) = —0-886 ./(vQ).

The frictional force acting on unit area of the disk perpendicularly to the radiusis o,
= n(0v,/02), - o - Neglecting edge effects, we may write the moment of the frictional forces
acting on a disk with large but finite radius R as

R
M=2 f 2nr%a,, dr = TR*p ./ (VQ*)G (0).
0

The factor 2 in front of the integral appears because the disk has two sides exposed to the
fluid. A numerical calculation of the function G leads to the formula

M = —1:94 R*p /(). (23.4)

FLOW IN DIVERGING AND CONVERGING CHANNELS

Determine the steady flow between two plane walls meeting at an angle « (Fig. 8 shows a
cross-section of the two planes); the fluid flows out from the line of intersection of the
planes (G. Hamel 1917).

We take cylindrical polar coordinates r, z, ¢, with the z-axis along the line of intersection
of the planes (the point O in Fig. 8),and the angle ¢ measured as shown in Fig. 8. The flow is
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uniform in the z-direction, and we naturally assume it to be entirely radial, i.e.
vy =0,=0, v, = v(r, P).

The equations (15.18) give

ov 10p v 10* 1ov v
At AU i ekt 23,
o~ por v<6r2+r26¢2+r6r rZ)’ (23.3)
1 dp 2vov
Sl ARy | 23.6
pr ¢ + r2o¢p (23.6)
o(rv)/or = 0.
It is seen from the last of these that rv is a function of ¢ only. Introducing the function
u(¢) = rv/6v, (23.7)
we obtain from (23.6)
1dp _ 12v* du
pdp r* do’
whence
p

12v?
S = U@+

Substituting this expression in (23.5), we have

d?u

1 5,
Ed—);+4u+6u2 = 6—vir3f (r),
from which we see that, since the left-hand side depends only on ¢ and the right-hand side
only on r, each must be a constant, which we denote by 2C,. Thus f'(r) = 12v3C,/r,

whence f(r) = —6v>C,/r* + constant, and we have for the pressure
6 2
P 2% (2u-C,)+constant. (23.8)
p

For u(¢) we have the equation
u' +4u+6u* =2C,,
which, on multiplication by «’ and one integration, gives

1u? 4 2u? +2u® -2Cu—-2C, =0.
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Hence we have

du
= 23.
2¢ ij‘y('_u3—u2+clu+C2)+C3, ( 9)

which gives the required dependence of the velocity on ¢; the function u(¢) can be
expressed in terms of elliptic functions. The three constants C,, C,, C; are determined
from the boundary conditions at the walls

u(+ia)=0 (23.10)

and from the condition that the same mass Q of fluid passes in unit time through any cross-
section r = constant:

a/2 a/2
Q=p J vrd¢ = 6vp f udo. (23.11)
—aj2 —aj2

Q may be either positive or negative. If Q@ > 0, the line of intersection of the planes is a
source, i.e. the fluid emerges from the vertex of the angle: this is called flow in a diverging
channel. If Q < 0, the line of intersection is a sink, and we have flow in a converging channel.
The ratio |Q|/vp is dimensionless and plays the part of the Reynolds number in the
problem considered.

Let us first discuss converging flow (Q < 0). To investigate the solution (23.9)-(23.11) we
make the assumptions, which will be justified later, that the flow is symmetrical about the
plane ¢ = 0 (i.e. u(¢) = u(— ¢)), and that the function u(¢) is everywhere negative (i.. the
velocity is everywhere towards the vertex) and decreases monotonically fromu = Qat ¢ =
+iatou= —uy, <0at ¢ = 0,so that u, is the maximum value of |u|. Then for u = —u,
we must have du/d¢ = 0, whence it follows that u = — u, is a zero of the cubic expression
under the radical in the integrand of (23.9). We can therefore write

—w—u?+Cu+C, = (u+uy){—u*—(1—uy)u+gq},

where ¢ is another constant. Thus

du
2= J \/[(“+u0){—“2—(1—u0)u+q}]’ (23.12)

— o
the constants u, and g being determined from the conditions

( \

- du
” f VI uo) {—w* — (1~ uo)u+q} ]’

R > (23.13)

udu

0

R=
f7[(“+“0){‘“2—(1—“0)“+‘1}]
— U

[ P

/
(R = |Q|/vp); the constant g must be positive, since otherwise these integrals would be

complex. The two equations just given may be shown to have solutions u, and g for any R
and a < 7. In other words, convergent symmetrical flow (Fig. 9)is possible for any aperture
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angle « < © and any Reynolds number. Let us consider in more detail the flow for very
large R. This corresponds to large u,. Writing (23.12) (for ¢ > 0) as

0

2Ga—¢) = j

du
:ﬁ:-(u +ug){ —u? — (1 —up)u+q}1°

we see that the integrand is small throughout the range of integration if |u] is not close to
u,. This means that |u| can differ appreciably from u, only for ¢ close to +73a, i.c. in the
immediate neighbourhood of the walls.T In other words, we have u ~ constant = — u, for
almost all angles ¢, and in addition u, = R/6a, as we see from equations (23.13). The
velocity vitself is | Q |/par, giving a non-viscous potential flow with velocity independent of
angle and inversely proportional to r. Thus, for large Reynolds numbers, the flow in a
converging channel differs very little from potential flow of an ideal fluid. The effect of the
viscosity appears only in a very narrow layer near the walls, where the velocity falls rapidly
to zero from the value corresponding to the potential flow (Fig. 10).

Fic. 10

Now let Q > 0, so that we have divergent flow. At first we again suppose that the flow is
symmetrical about the plane ¢ = 0, and that u(¢) (Where now u > 0) varies monotonically
from zero at ¢ = +3a to u, > 0 at ¢ = 0. Instead of (23.13) we now have

t The question may be asked how the integral can cease to be small, even if u > — u,. The answer is that, for u,
very large, one of the roots of —u?— (1 —uy)u+q = 0 is close to — ug, so that the radicand has two almost
coincident zeros. the whole integral therefore being “almost divergent” at u = — u,.

FM-D



80 Viscous Fluids §23

- ¢ du )
- J 7[(140 —u){u+ (1 +uu+gq}]’
‘; > (23.14)
IR = ( udu .
6 J :;[(uo—u){u2+(1+uo)u+q}]
0

If we regard u, as given, then a increases monotonically as g decreases, and takes its greatest
value for g = 0:

Fmax = j 7[u(uo - u)(u +u,+1)]

It is easy to see that for given g, on the other hand, a is a monotonically decreasing function
of u,. Hence it follows that u, is a monotonically decreasing function of g for given «, so
that its greatest value is for ¢ = 0 and is given by the above equation. The maximum
R = R, corresponds to the maximum u,. Using the substitutions k* = u,/(1 + 2u,),
u = u, cos® x, we can write the dependence of R_,, on a in the parametric form

n/2 )
dx
a=2\/(1—2k2)j 7(1_1(2 Sinz x)a
/2 > (23.15)
l—k 2
R = —6a mpyE \/(1 2k2 j \/(1 —k? sin? x)dx.

/

Thus symmetrical flow, everywhere divergent (Fig. 11a), is possible for a given aperture
angle only for Reynolds numbers not exceeding a definite value. As a —» 1 (k — 0),
Ry~ 0;as >0 (k - 1//2), Ry, tends to infinity as 18:8/a.

Fic. 11

For R > R, the assumption of symmetrical flow, everywhere divergent, is unjustified,
since the conditions (23.14) cannot be satisfied. In the range of angles —3a < ¢ < 4athe
function u(¢) must now have maxima or minima. The values of u(¢) corresponding
to these extrema must again be zeros of the polynomial under the radical sign. It is
therefore clear that the trinomial u? + (1 4+ uo)u + g (with uy > 0, ¢ > 0) must have two
real negative roots in the range mentioned, so that the radicand can be written
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(up—u) (u+uy') (u+uy”), where uy >0, uy' > 0, uy” > 0; we suppose u,’ < uy”. The
function u(¢) can evidently vary in the range u, > u > —u,’, u = y, corresponding to a
positive maximum of u(¢),and u = — u,’ to a negative minimum. Without pausing to make
a detailed investigation of the solutions obtained in this way, we may mention that for
R >R, ,,asolution appears in which the velocity has one maximum and one minimum, the
flow being asymmetric about the plane ¢ = 0 (Fig. 11b). When R increases further, a
symmetrical solution with one maximum and two minima appears (Fig. 11c),and soon. In
all these solutions, therefore, there are regions of both outward and inward flow (though
of course the total discharge Q is positive). As R — oo the number of alternating minima
and maxima increases without limit, so that there is no definite limiting solution. We may
emphasize that in divergent flow as R — oo the solution does not, therefore, tend to the
solution of Euler’s equations as it does for convergent flow. Finally, it may be mentioned
that, as R increases, the steady divergent flow of the kind described becomes unstable soon
after R exceeds R ,,, and in practice a non-steady or turbulent flow occurs (Chapter I1I).

SUBMERGED JET

Determine the flow in a jet emerging from the end of a narrow tube into an infinite space
filled with the fluid—the submerged jet (L. Landau 1943).

We take spherical polar coordinates r, 0, ¢, with the polar axis in the direction of the jet
at its point of emergence, and with this point as origin. The flow is symmetrical about the
polar axis, so that v, = O and v,, v, are functions of r and 6 only. The same total momentum
flux (the “momentum of the jet”) must pass through any closed surface surrounding the
origin (in particular, through an infinitely distant surface). For this to be so, the velocity
must be inversely proportional to r, so that

v, =F@O)/r, vy=f(0)/r, (23.16)

where F and f are some functions of 6 only. The equation of continuity is

1 a(r*v,) 1 0 .
P or + rsin6 00 (¢ sin 6) = 0.

Hence we find that
F(0)= —df/df —fcot 6. (23.17)

The components I1,,, I1,, of the momentum flux density tensor in the jet vanish
identically by symmetry. We assume that the components I1,, and I1 ,, also vanish; this
assumption is justified when we obtain a solution satisfying all the necessary conditions.
Using the expressions (15.20) for the components of the tensor ¢;,, and formulae (23.16),
(23.17), we easily see that the relation

1o

sin2 011, = 330 [sin® O(I1,, —T14)]

holds between the components of the momentum flux density tensor in the jet. Hence it

follows that IT,, = 0. Thus only the component I1,, is non-zero, and it varies as 1/r2. It is

easy to see that the equations of motion dI1,/dx, = 0 are automatically satisfied.
Next, we write

Moo —Tlyg)/p = (f*+2vfcot0 —2vf)/r* =0,
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or

d(1/f)/d0+ (1/f)cot 6 +1/2v = 0.

The solution of this equation is

f= —2vsin0/(A—cos 0), (23.18)
and then we have from (23.17)
A2—1
=29 ———— — 1. :
F v{(A—cos e 1} (23.19)

The pressure distribution is found from the equation
My/p=p/p+f(f+2vcot6)/r* =0,
which gives

4pv* (A cos 0 —1)
r* (A —cos 0)°

P—Po= (23.20)

with p, the pressure at infinity. The constant 4 can be found in terms of the momentum of
the jet, i.e. the total momentum flux in it. This flux is equal to the integral over the surface of
a sphere

n

P= §H,,cos€df= 2n J r?I1,,cos 0 sin 6d0.

0

The value of I1,, is given by
lH _ 4v2{ (A2 —1)? A }’

p " r* |(A—cosf)* A—cosb
and a calculation of the integral gives
4 A+1
P=16nv’pA{l+——5— —314 .
nvep { +3(A2—1) 3 logA_l} (23.21)

Formulae (23.16)-(23.21) give the solution of the problem. When A varies from 1 to oo, the
jet momentum P takes all values between oo and 0.
The streamlines are determined by the equation dr/v, = rdf/v,, integration of which
gives
rsin® 0
A —cos0 — constant. (23.22)

Figure 12 shows the characteristic form of the streamlines. The flow is a jet which comes
from the origin and sucks in the surrounding fluid. If we arbitrarily regard as the boundary
of the jet the surface where the streamlines have the least distance (r sin 6) from the axis, it
is a cone with angle 26,, where cos 6, = 1/A.

In the limiting case of a weak jet (small P, corresponding to large A), we have from
(23.21)

P = 16nv?p/ A.
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In this case, the velocity is

B P sinf P cosf
8nvp r '

(23.23)

vy = v, =
9 " dmvp r

In the opposite limit of a strong jet (large P, corresponding to A — 1), we have
A=1+36,% 02 = 64nvip/3P.
For large angles (0 = 1), the velocity distribution is given by
vy = — (2v/r)cot 10, v, = —2v/r; (23.24)
for small angles (0 = 6,),

4v0 8v0,*

SN T R

(23.25)
The solution here obtained is exact for a jet regarded as emerging from a point source. If
the finite dimensions of the tube mouth are taken into account, the solution becomes the
first term of an expansion in powers of the ratio of these dimensions to the distance r from
the mouth of the tube. This is why, if we calculate from the above solution the total mass
flux through a closed surface surrounding the origin, the result is zero. A non-zero total
mass flux is obtained when further terms in the above-mentioned expansion are
considered.}

§24. Oscillatory motion in a viscous fluid

When a solid body immersed in a viscous fluid oscillates, the flow thereby set up has a
number of characteristic properties. In order to study these, it is convenient to begin witha
simple but typical example (G. G. Stokes 1851). Let us suppose that an incompressible fluid
is bounded by an infinite plane surface which executes a simple harmonic oscillation in its
own plane, with frequency w. We require the resulting motion of the fluid. We take the

t However, the flow in a sufficiently strong jet is actually turbulent (§36). The Reynolds number for the jet
considered is represented by the dimensionless parameter \/ (P/pv?).

{ See Yu. B. Rumer, Prikladnaya matematika i mekhanika 16, 255, 1952.

The submerged laminar jet with a non-zero angular momentum has been discussed by L. G. Loitsyanskii (ibid.
17, 3, 1953).

The hydrodynamic equations for any steady axially symmetrical flow of an incompressible viscous fluid with
the velocity decreasing as 1/r can be reduced to a single second-order ordinary linear differential equation; sec N.
A. Slezkin, Uchenye zapiski Moskovskogo gosudarstvennogo universiteta, No. 2, 1934; Prikladnaya matematika i
mekhanika 18, 764, 1954.
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solid surface as the yz-plane, and the fluid region as x > 0; the y-axis is taken in the
direction of the oscillation. The velocity u of the oscillating surface is a function of time, of
the form A4 cos(wt + ). It is convenient to write this as the real part of a complex quantity:

u = re(uge” "),

where the constant u, = Ae™ " is in general complex, but can always be made real by a
proper choice of the origin of time.

So long as the calculations involve only linear operations on the velocity u, we may omit
the sign re and proceed as if u were complex, taking the real part of the final result. Thus we

write _
u, = u=uge . (24.1)

The fluid velocity must satisfy the boundary condition v = u for x =0, ie. v, = v, = 0,
v, = U

’ It is evident from symmetry that all quantities will depend only on the coordinate x and
the time . From the equation of continuity divv = 0 we therefore have dv,/dx = 0,
whence v, = constant = zero, from the boundary condition. Since all quantities are
independent of the coordinates y and z, and since v, is zero, it follows that (v-grad)v =0
identically. The equation of motion (15.7) becomes

ov/ot= —(1/p)gradp+vAv. (24.2)

This is a linear equation. Its x-component is dp/dx = 0, i.e. p = constant.
It is further evident from symmetry that the velocity v is everywhere in the y-direction.
For v, = v we have by (24.2)

ov/0t = vd*v/0x?, (24.3)

that is, a (one-dimensional) heat conduction equation. We shall look for a solution of this
equation which is periodic in x and t, of the form

— i(kx — ot
v_uoel(x w)’

so that v = u for x = 0. Substituting in (24.3), we find
iw=vk%, k= (1+i)/3, &=./(2v/0), (24.4)

so that the velocity is
v = uge */%eix/d-wn, (24.5)

the choice of the sign of \/ iin (24.4) is determined by the need for the velocity to decrease
into the fluid.

Thus transverse waves can occur in a viscous fluid, with the velocity v, = v perpendicular
to the direction of propagation. They are, however, rapidly damped as we move away from
the solid surface whose motion generates the waves. The amplitude damping is
exponential, the depth of penetration being 6.1 This depth decreases with increasing
frequency of the wave, but increases with the kinematic viscosity of the fluid.

The frictional force on the solid surface is evidently in the y-direction. The force per unit
area is

Ory = 1(00,/0X), =0 = \/ (Fonp) (i — L)u. (24.6)

t Over a distance , the wave amplitude decreases by a factor of e; over one wavelength, it decreases by a factor
of €2 ~ 540.
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Supposing u, real and taking the real part of (24.6), we have

Oy = — \/(conp)uo cos (wt + ).

The velocity of the oscillating surface, however, is u = u, cos wt. There is therefore a phase
difference between the velocity and the frictional force.

It is easy to calculate also the (time) average of the energy dissipation in the above
problem. This may be done by means of the general formula (16.3); in this particular case,
however, it is simpler to calculate the required dissipation directly as the work done by the
frictional forces. The energy dissipated per unit time per unit area of the oscillating plane is
equal to the mean value of the product of the force o,, and the velocity u, = u:

— 0,4 = $up2/(Gomp). (24.7)

It is proportional to the square root of the frequency of the oscillations, and to the square
root of the viscosity.

An explicit solution can also be given of the problem of a fluid set in motion by a plane
surface moving in its plane according to any law u = u(t). We shall not pause to give the
corresponding calculations here, since the required solution of equation (24.3) is formally
identical with that of an analogous problem in the theory of thermal conduction, which we
shall discuss in §52 (the solution is formula (52.15)). In particular, the frictional force on
unit area of the surface is given by

np du(tr) dr
-J j P 7‘“_1), (24.8)

Oyxy =

cf. (52.14).

Let us now consider the general case of an oscillating body with any shape. In the case of
an oscillating plane considered above, the term (v - grad)v in the equation of motion of the
fluid was identically zero. This does not happen, of course, for a surface with arbitrary
shape. We shall assume, however, that this term is small in comparison with the other
terms, so that it may be neglected. The conditions necessary for this procedure to be valid
will be examined below.

We shall therefore begin, as before, from the linear equation (24.2). We take the curl of
both sides; the term curl grad p vanishes identically, giving

J(curlv)/0t = vA curly, (24.9)

i.e. curl v satisfies a heat conduction equation. We have seen above, however, that such an
equation gives an exponential decrease of the quantity which satisfies it. We can therefore
say that the vorticity decreases towards the interior of the fluid. In other words, the motion
of the fluid caused by the oscillations of the body is rotational in a certain layer round the

t For oscillations of a half-plane (parallel to its edge) there is an additional frictional force due to edge effects.
The problem of the motion of a viscous fluid caused by oscillations of a half-plane, and also the more general
problem of the oscillations of a wedge with any angle, can be solved by a class of solutions of the equation
A f+k? f=0, used in the theory of diffraction by a wedge. We give here, for reference, only one result: the
increase in the frictional force on a half-plane, arising from the edge effect, can be regarded as the result of
increasing the area of the half-plane by moving the edge a distance 14, with ¢ as in (24.4) (L. D. Landau 1947).
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body, while at larger distances it rapidly changes to potential flow. The depth of
penetration of the rotational flow is of the order of é.

Two important limiting cases are possible here: the quantity § may be either large or
small compared with the dimension of the oscillating body. Let I be the order of magnitude
of this dimension. We first consider the case § > I; this implies that I’ < v. Besides this
condition, we shall also suppose that the Reynolds number is small. If a is the amplitude of
the oscillations, the velocity of the body is of the order of aw. The Reynolds number for the
flow in question is therefore wal/v. We thus suppose that

Po<v, wal/lvl. (24.10)

This is the case of low frequencies of oscillation, which in turn means that the velocity
varies only slowly with time, and therefore that we can neglect the derivative dv/0t in the
general equation of motion Jv/dt+ (v-grad)v = —(1/p)gradp+vAv. The term
(v-grad)v, on the other hand, can be neglected because the Reynolds number is small.

The absence of the term 0v/0t from the equation of motion means that the flow is
steady. Thus, for 6 > [, the flow can be regarded as steady at any given instant. This means
that the flow at any given instant is what it would be if the body were moving uniformly
with its instantaneous velocity. If, for example, we are considering the oscillations of a
sphere immersed in the fluid, with a frequency satisfying the inequalities (24.10) (I being
now the radius of the sphere), then we can say that the drag on the sphere will be that given
by Stokes’ formula (20.14) for uniform motion of the sphere at small Reynolds numbers.

Let us now consider the opposite case, where I > J. In order that the term (v-grad)v
should again be negligible, it is necessary that the amplitude of the oscillations should be
small in comparison with the dimensions of the body:

Po>v, a<l; (24.11)

in this case, it should be noticed, the Reynolds number need not be small. The above
inequality is obtained by estimating the magnitude of (v-grad)v. The operator (v-grad)
denotes differentiation in the direction of the velocity. Near the surface of the body,
however, the velocity is nearly tangential. In the tangential direction the velocity changes
appreciably only over distances of the order of the dimension of the body. Hence

(v-grad)v ~ v?/l ~ a’w?/I,

since the velocity itself is of the order of aw. The derivative dv/0t, however, is of the order
of vw ~ aw?. Comparing these, we see that

(v-grad)v < dv/0t

if a <€ I. The terms 0v/dt and vA v are then easily seen to be of the same order.

We may now discuss the nature of the flow round an oscillating body when the
conditions (24.11) hold. In a thin layer near the surface of the body the flow is rotational,
but in the rest of the fluid we have potential flow.t Hence the flow everywhere except in the
layer adjoining the body is given by the equations

curlv = (Q, divv=0. (24.12)

t For oscillations of a plane surface not only curl v but also v itself decreases exponentially with characteristic
distance d. This is because the oscillating plane does not displace the fluid, and therefore the fluid remote from it
remains at rest. For oscillations of bodies with other shapes the fluid is displaced, and therefore executes a motion
where the velocity decreases appreciably only over distances of the order of the dimension of the body.
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Hence it follows that Av =0, and the Navier-Stokes equation reduces to Euler’s
equation. The flow is therefore ideal everywhere except in the surface layer. Since this layer
is thin, in solving equations (24.12) to determine the flow of the rest of the fluid we should
take as boundary condtions those which must be satisfied at the surface of the body, i.e.
that the fluid velocity be equal to that of the body. The solutions of the equations of motion
for an ideal fluid cannot satisfy these conditions, however. We can require only the
fulfilment of the corresponding condition for the fluid velocity component normal to the
surface.

Although equations (24.12) are inapplicable in the surface layer of fluid, the velocity
distribution obtained by solving them satisfies the necessary boundary condition for the
normal velocity component, and the actual variation of this component near the surface
therefore has no significant properties. The tangential component would be found, by
solving the equations (24.12), to have some value different from the corresponding velocity
component of the body, whereas these velocity components should be equal also. Hence
the tangential velocity component must change rapidly in the surface layer. The nature of
this variation is easily determined. Let us consider any portion of the surface of the body,
with dimension large compared with J, but small compared with the dimension of the
body. Such a portion may be regarded as approximately plane, and therefore we can use
the results obtained above for a plane surface. Let the x-axis be directed along the normal
to the portion considered, and the y-axis parallel to the tangential velocity component of
the surface there. We denote by v, the tangential component of the fluid velocity relative to
the body; v, must vanish on the surface. Lastly, let voe ' be the value of v, found by
solving equations (24.12). From the results obtained at the beginning of this section, we can
say that in the surface layer the quantiy v, will fall off towards the surface according to the
law¥

b, = vpe [l —e=U-Ix/(@/2)], (24.13)

Finally, the total amount of energy dissipated in unit time will be given by the integral

Byin = —%\/(%wﬂp)§lvol2 df (24.14)

taken over the surface of the oscillating body.

In the Problems at the end of this section we calculate the drag on various bodies
oscillating in a viscous fluid. Here we shall make the following general remark regarding
these forces. Writing the velocity of the body in the complex form u = u,e” *“!, we obtain a
drag F proportional to the velocity u, and also complex: F = fu, where = B, +if,isa
complex constant. This expression can be written as the sum of two terms with real
coefficients:

F=(p,+if,)u= B u—pu/o, (24.15)

one proportional to the velocity u and the other to the acceleration u.

The (time) average of the energy dissipation is given by the mean product of the drag
and the velocity, where of course we must first take the real parts of the expressions given
above, ie. u = L(uge " + uy*e'"), F = 3 (uo Be™ "' + uy* B*€''). Noticing that the mean
values of et2i@t gre zero, we have

Egn = Fu = 3(B+B¥) ol = 15, 1uo | (24.16)

t The velocity distribution (24.13) is written in a frame where the solid body is at rest (v, = 0 when x = 0).
Hence v, must be taken as the solution of the problem of potential flow past a body at rest.

FM-D¥
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Thus we see that the energy dissipation arises only from the real part of B; the
corresponding part of the drag (24.15), proportional to the velocity, may be called the
dissipative part. The other part of the drag, proportional to the acceleration and
determined by the imaginary part of g, does not involve the dissipation of energy and may
be called the inertial part.

Similar considerations hold for the moment of the forces on a body executing rotary
oscillations in a viscous fluid.

PROBLEMS

PrOBLEM 1. Determine the frictional force on each of two parallel solid planes, between which is a layer of
viscous fluid, when one of the planes oscillates in its own plane.

SOLUTION. We seck a solution of equation (24.3) in the form+t
v = (A sin kx + B cos kx)e™ ",

and determine A and B from the conditions v = u = uge ™' for x = 0and v = 0 for x = h, where his the distance
between the planes. The result is

sink(h—x)
sinkh
The frictional force per unit area on the moving plane is

Py, = n(0v/0x),=o = —nku cot kh,

while that on the fixed plane is
P,, = —n{0v/0x), -, = nku cosec kh,
the real parts of all quantities being understood.

PROBLEM 2. Determine the frictional force on an oscillating plane covered by a layer of fluid with thickness h,
the upper surface being free.

SoLuTION. The boundary condition at the solid plane is v = u for x =0, and that at the free surface is
6., =nov/dx = 0 for x = h. We find the velocity
cos k(h — x)

coskh

The frictional force is

P, = n(0v/0x),=o = nkutan kh.

PROBLEM 3. A plane disk with large radius R executes rotary oscillations with small amplitude about its axis,

the angle of rotation being 6 = 6, cos wt, where 6, < 1. Determine the moment of the frictional forces acting on
the disk.

SoLuTION. For oscillations with small amplitude the term (v - grad)v in the equation of motion is always small
compared with dv/dt, whatever the frequency w. If R > §, the disk may be regarded as infinite in determining the
velocity distribution. We take cylindrical polar coordinates, with the z-axis along the axis of rotation, and seek a

solution such that v, = v, =0, v, = v =rQ(z, 1). For the angular velocity Q(z, t) of the fluid we obtain the
equation

0Q/ot = vo*Q/oz>.
The solution of this equation which is — w8, sin wt for z = 0 and zero for z = o is

Q= —wlye ' sin(wt —z/8).

t In all the Problems to this section k and é are defined as in (24.4).
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The moment of the frictional forces on both sides of the disk is
R

M=2 j‘ r-2nrn(0v/0z),-odr = wﬂon\/(wpry)R“ cos(wt —in).

0o

PrOBLEM 4. Determine the flow between two parallel planes when there is a pressure gradient which varies
harmonically with time.

SoLuTION. We take the xz-plane half-way between the two planes, with the x-axis parallel to the pressure
gradient, which we write in the form

—(1/p)op/dx = ae™ .
The velocity is everywhere in the x-direction, and is determined by the equation
Ov/0t = ae™ "'+ vd*v/dy>.

The solution of this equation which satisfies the conditions v =0 for y = £ 4his

ia _. cos ky
v=—e fet 1 -3 I
[0 cosykh

The mean value of the velocity over a cross-section is
ia _. 2
v=—e " 1—-—tanikh ).
w ( kh = )
For h/é < 1 this becomes
U~ ae "“"h?/12v,
in agreement with (17.5), while for h/é > 1 we have
0 = (ia/w)e™ ™",
in accordance with the fact that in this case the velocity must be almost constant over the cross-section, varying
only in a thin surface layer.
PrROBLEM 5. Determine the drag on a sphere with radius R which executes translatory oscillations in a fluid.

SoLuTION. We write the velocity of the sphere in the form u = uye™ . Asin §20, we seek the fluid velocity in
theformv = ¢~ "“*curl curl fu,,where f isa function of r only (the origin is taken at the instantaneous position of
the centre of the sphere). Substituting in (24.9) and effecting transformations similar to those in §20, we obtain the
equation

A%+ (iw/v)A f=0
(instead of the equation A2f = 0in §20). Hence we have
A f = constant x e'*"/r,
the solution being chosen which decreases exponentially with r. Integrating, we have
df/dr = [ae™ (r—1/ik) + b])/r?; 1)

the function fitself is not needed, since only the derivatives f” and f” appear in the velocity. The constants g and b
are determined from the condition that v = u for r = R, and are found to be

3R 3 3
= I g-ikR, b= —4R|1——————) 2

= T2 ¢ 2 ( kR k’Rz) )
It may be pointed out that, at high frequencies (R >4), a =0 and b — —4R?>, the values for potential flow

obtained in §10, Problem 2; this is in accordance with what was said in §24.

Thedrag is calculated from formula (20.13), in which the integration is over the surface of the sphere. The result
is

R 2R\ du
F=6mmR| 14— R? —_— ) —. 3
nn ( +6)u+3n \/(2r1p/w)(1+9(3 )dt 3)

For @ = 0 this becomes Stokes’ formula, while for large frequencies we have

d
F =%npR? El{ +37R2/2npw)u.
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The first term in this expression corresponds to the inertial force in potential flow past a sphere (see §11, Problem
1), while the second gives the limit of the dissipative force. This second term could also have been found by
calculating the energy dissipation according to (24.14); see Problem 6.

PrOBLEM 6. Find the expression, in the limit of high frequencies (5 < R), for the dissipative drag on an infinite
cylinder with radius R oscillating at right angles to its axis.

SoLuTioN. The velocity distribution round a cylinder at rest in a transverse flow is
v = (R?/r*)[2n(u-n)—u] —u;

see §10, Problem 3. From this, we find as the tangential velocity at the surface of the cylinder

Vo = —2usin ¢,

where rand ¢ are polar coordinates in the transverse plane, with ¢ measured from the direction of u. From (24.14)
we find the energy dissipated per unit length of the cylinder:

Eh»n = nu? R/ 2npw).
Comparison with (24.15) and (24.16) gives the result

Fgs = 2ruR./(2npw).

PrROBLEM 7. Determine the drag on a sphere moving in an arbitrary manner, the velocity being given by a
function u(z).

SOLUTION. We represent u(t) as a Fourier integral:

o

1 i )
u(t) = — I u,e “'do, u, = J u(t)e' dr.
2n

-

Since the equations are linear, the total drag may be written as the integral of the drag forces for velocities which
are the separate Fourier components u e “"; these forces are given by (3) of Problem S, and are

6v 2iw 3\/(2v

R3 -t} 7" = 1—
npR u,e {Rz 3 (=i }
Noticing that (du/dt), = — iwu,, we can rewrite this as

. §6v 2 1
npR3e"“"{R2 U, + 3 (1), +— W V)( )m%}

On integration over w/2x, the first and second terms give respectively u(t) and u(t). To integrate the third term, we
notice first of all that for negative w this term must be written in the complex conjugate form, (1 + z)\/ o being
replaced by (1 —i) /\/ jwi; this is because formula (3) of Problem 5 was derived for a velocity u = uge™ ' with
o > 0,and for a velocity u, ¢’ we should obtain the complex conjugate. Instead of an integral over @ from — co
to + oo, we can therefore take twice the real part of the integral from 0 to co. We write

(t)exa)(t 1)

(d),e~*" [ (
—re{(1+1)j*Adw}——re{(l-m) J J.——7~—dwdt}
-x 0

. . —iwft~t) s
=1re{(1+i) j dewdr+(1+l)f
n \/w

- O 1

u(r)elw(t 1)

—7——dwdt}

Oi-—__>8

t

Vel [ e it}

e
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Thus we have finally for the drag

sfLdu dw \/ j }
F =2mpR {3(" (t-—z C)]

PrOBLEM 8. Determine the drag on a sphere which at time ¢ = 0 begins to move with a uniform acceleration,
u=at

SoLuTION. Putting, in formula (4) of Problem 7, u = 0 for t < 0 and u = at for t > 0 we have for t > 0

F = 210R® 1 +3vt + 6 Jtv
= al -+—+—_[— |
PR ITRE TR

PROBLEM 9. The same as Problem 8, but for a sphere brought instantaneously into uniform motion.

SoLuTiON. We have u = 0 for t <0 and u = u, for t > 0. The derivative du/dt is zero except at the instant
t = 0, when it is infinite, but the time integral of du/dt is finite, and equals u,. As a result, we have for all ¢t > 0

R
F = 6npvRu, [1 +m]+%npk3u06(t),

where d(t) is the delta function. For ¢ — oo this expression tends asymptotically to the value given by Stokes’
formula. The impulsive drag on the sphere at ¢ = 0 is obtained by integrating the last term and is $npR3u,

ProBLEM 10. Determine the moment of the forces on a sphere executing rotary oscillations about a diameter
in a viscous fluid.

SoLruTioN. For the same reasons as in §20, Problem 1, the pressure-gradient term can be omitted from the
equation of motion, so that we have dv/dt = v/ v. We seek a solution in the form v = curl fQ e ™", where Q
= Q,e” " is the angular velocity of rotation of the sphere. We then obtain for f, instead of the equation
A f= constant,

X f+ k*f = constant.

Omitting an unimportant constant term in the solution of this equation, we find f = ae’™ /r, taking the solution
which vanishes at infinity. The constant ais determined from the boundary condition that v = Qxr at the surface
of the sphere. The result is

R? R\? 1 —ikr
= ik(r— R) = (Qxr)| — eikir—R),
ra—wr) > VT ')(r> 1- kR

where Ris the radius of the sphere. A calculation like that in §20, Problem 1, gives the following expression for the
moment of the forces exerted on the sphere by the fluid:

8 3+6R/6+6(R/6)* +2(R/S)® — 21(R/6)2(1+R/6)
M= —~—nRQ
3 1+2R/6+2(R/6)?

For w — 0 (i.e. 5 = o0), we obtain M = — 8nnR>3Q, corresponding to uniform rotation of the sphere (see §20,
Problem 1). In the opposite limiting case R/J > 1, we find

M=4J2
3

This expression can also be obtained directly: for § < R each element of the surface of the sphere may be regarded
as plane, and the frictional force acting on it is found by substituting ¥ = QR sin 8 in formula (24.6).

R/ (1pw) (i — Q.

ProBLEM 11. Determine the moment of the forces on a hollow sphere filled with viscous fluid and executing
rotary oscillations about a diameter.

SoLuTION. We seek the velocity in the same form as in Problem 10. For f we take the solution (a/7) sin kr,
which is finite everywhere within the sphere, including the centre. Determining a from the boundary condition,
we have

R >3 kr cos kr —sin kr

=Qxn|{-) ——mM8M ———.
v=( l.)(r kR cos kR —sin kR
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A calculation of the moment of the frictional forces gives the expression

k2R? sin kR + 3kR cos kR — 3 sin kR
kR cos kR —sin kR

The limiting value for R/d > 1 is of course the same as in the preceding problem. If R/é < 1 we have

R*w
M=% R*Q|i- .
15 Tpw (' 35y )

M =$mR}Q

The first term corresponds to the inertial forces occurring in the rigid rotation of the whole fluid.

§25. Damping of gravity waves

Arguments similar to those given above can be advanced concerning the velocity
distribution near the free surface of a fluid. Let us consider oscillatory motion occurring
near the surface (for example, gravity waves). We suppose that the conditions (24.11) hold,
the dimension / being now replaced by the wavelength A:

o>y, a<i; (25.1)

a is the amplitude of the wave, and w its frequency. Then we can say that the flow is
rotational only in a thin surface layer, while throughout the rest of the fluid we have
potential flow, just as we should for an ideal fluid.

The motion of a viscous fluid must satisfy the boundary conditions (15.16) at the free
surface; these require that certain combinations of the space derivatives of the velocity
should vanish. The flow obtained by solving the equations of ideal-fluid dynamics does not
satisfy these conditions, however. As in the discussion of v, in the previous section, we may
conclude that the corresponding velocity derivatives decrease rapidly in a thin surface
layer. It is important to notice that this does not imply a large velocity gradient as it does
near a solid surface.

Let us calculate the energy dissipation in a gravity wave. Here we must consider the
dissipation, not of the kinetic energy alone, but of the mechanical energy E_ ., which
includes both the kinetic energy and the potential energy in the gravitational field. It is
clear, however, that the presence or absence of a gravitational field cannot affect the energy
dissipation due to processes of internal friction in the fluid. Hence E_,, is given by the

same formula (16.3): ; R
. v; Ov )
Epecn = —41 J‘(E'*'g}) dv.

In calculating this integral for a gravity wave, it is to be noticed that, since the volume of the
surface region of rotational flow is small, while the velocity gradient there is not large, the
existence of this region may be ignored, unlike what was possible for oscillations of a solid
surface. In other words, the integration is to be taken over the whole volume of fluid,
which, as we have seen, moves as if it were an ideal fluid.

The flow in a gravity wave for an ideal fluid, however, has already been determined in
§12. Since we have potential flow,

0v;/0x, = 0*¢/0x, 0x; = Ov,/0x;,

. 02¢ 2 )
Emech = —27] Jv(aXAG_xk) dr.

so that
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The potential ¢ has the form
¢ = ¢ cos (kx — wt + a)e*®.

We are interested, of course, not in the instantaneous value of the energy dissipation, but in
its mean value with respect to time. Noticing that the mean values of the squared sine and
cosine are the same, we find

Epec = —8nk* | p2dV. (25.2)

The energy E . itself may be calculated for a gravity wave by using a theorem of
mechanics that, in any system executing small oscillations (with small amplitude, that is),
the mean kinetic and potential energies are equal. We can therefore write E__, simply as
twice the kinetic energy:

Epecn = pf?FdV= pj@i/axi)zdv,

whence

E peet, = 2pk? J $2dV. (25.3)

The damping of the waves is conveniently characterized by the damping coefficient 7y,
defined as

¥ =1Ep et |/ 2E et (25.4)

In the course of time, the energy of the wave decreases according to the law E .,
= constant x e~ 2”'; since the energy is proportional to the square of the amplitude, the
latter decreases with time as e,

Using (25.2), (25.3), we find

y = 2vk2. (25.5)
Substituting here (12.7), we obtain the damping coefficient for gravity waves in the form
y = 2vw*/ g% (25.6)

PROBLEMS

PROBLEM 1. Determine the damping coefficient for long gravity waves propagated in a channel with constant
cross-section; the frequency is supposed so large that \/ (v/w) is small compared with the depth of the fluid in the
channel and the width of the channel.

SoLuTioN. The principal dissipation of energy occurs in the surface layer of fluid, where the velocity changes
from zero at the boundary to the value v = v, e ™' which it has in the wave. The mean energy dissipation per unit
length of the channelis by (24.14) l|v, |2\/ (npw/8), where lis the perimeter of the part of the channel cross-section
occupied by the fluid. The mean energy of the fluid (again per unit length)is S pv? = $Sp|v, |2, where Sis the cross-

sectional area of the fluid in the channel. The damping coefficient is y = I\/ (vwr/88?). For a channel with
rectangular section, therefore,

2h+a
Y= 2\/20'! \/(V(D),

where a is the width and h the depth of the fluid.

PrOBLEM 2. Determine the flow in a gravity wave on a very viscous fluid (v 2 w4?).
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SoLuTioN. The calculation of the damping coefficient as shown above is valid only when this coefficient is
small (y < w),so that the motion may be regarded as that of an ideal fluid to a first approximation. For arbitrary
viscosity we seek a solution of the equations of motion

ov, (62vx 62vx) 1 dp
=y _

ot \ox? 02 ) pax
dv, d%v, J*v,\ 10p
T )
ov, Ov,
Ec—+ oz

which depends on t and x as e™*'*** and diminishes in the interior of the fluid (z > 0). We find
o o ik
v, = e—wn+xkx(Aekz+Bemz), v, = e—mu+xkx(___iAekz_i_ Bemz),
m

plp=e "t * A /k—gz, where m= . /(k*—ion/v).
The boundary conditions at the fluid surface are
dv, Ov,
2z | ox

In the second condition we can immediately put z = 0 instead of z = {. The first condition, however, should be
differentiated with respect to ¢, after which we replace gd{/dt by gv, and then put z = 0. The condition that the
resulting two homogeneous equations for A and B be compatible gives

(2 iw>2+ g —4\/(1 iw) 1)
vk? vk vk? ) (

This equation gives w as a function of the wave number k; w is complex, its real part giving the frequency of the
oscillations and its imaginary part the damping coefficient. The solutions of equation (1) that have a physical
meaning are those whose imaginary parts are negative (corresponding to damping of the wave); only two roots of
(1) meet this requirement. If vk? < /(gk) (the condition (25.1)), then the damping coefficient is small, and (1) gives
approximately w = + ,/(gk) —i.2vk?, aresult which we already know. In the opposite limiting case vk’ > \/g(]gk),
equation (1) has two purely imaginary roots, corresponding to damped aperiodic flow. Oneroot is @ = —ig/2vk,
while the other is much larger (of order vk?), and therefore of no interest, since the corresponding motion is
strongly damped.

6,.=—p+2n0v.[02=0, o, ='l( >=0 for z=2¢.



CHAPTER III

TURBULENCE

§26. Stability of steady flow

For any problem of viscous flow under given steady conditions there must in principle
exist an exact steady solution of the equations of fluid dynamics. These solutions formally
exist for all Reynolds numbers. Yet not every solution of the equations of motion, even if it
is exact, can actually occur in Nature. Those which do must not only obey the equations of
fluid dynamics, but also be stable. Any small perturbations which arise must decreasein the
course of time. If, on the contrary, the small perturbations which inevitably occur in the
flow tend to increase with time, the flow is unstable and cannot actually exist.}

The mathematical investigation of the stability of a given flow with respect to infinitely
small perturbations will proceed as follows. On the steady solution concerned (whose
velocity distribution is vy(r), say), we superpose a non-steady small perturbation v, (r, 1),
which must be such that the resulting velocity v = v, + v, satisfies the equations of motion.
The equation for v, is obtained by substituting in the equations

0 d
a_: +v-gradyy= —Z2%P LAy, divv=0 (26.1)
the velocity and pressure
V=Vo+Vy, P=po+p1, (26.2)
where the known functions v, and p, satisfy the unperturbed equations
d .
(vo- grad)v, = — g?;-pﬂ +vAv,,  divv, = 0. (26.3)
Omitting terms above the first order in v,, we obtain
ov
’&1‘ + (vo - grad)v, + (v, - grad)v,
grad p, )
= — p +vAv,, divv, =0. (26.4)

The boundary condition is that v, vanish on fixed solid surfaces.

Thus v, satisfies a system of homogeneous linear differential equations, with coefficients
that are functions of the coordinates only, and not of the time. The general solution of such
equations can be represented as a sum of particular solutions in which v, depends on time

t In the previous edition, instability with respect to infinitesimal perturbations was called absolute instability.
This adjective will not now be used in the present context, but will serve (in accordance with more customary
terminology) as a contrast to convected (§28).
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as e~ ', The frequencies w of the perturbations are not arbitrary, but are determined by
solving the equations (26.4) with the appropriate boundary conditions. The frequencies are
in general complex. If there are w whose imaginary parts are positive, e ~** will increase
indefinitely with time. In other words, such perturbations, once having arisen, will increase,
i.e. the flow is unstable with respect to such perturbations. For the flow to be stable it is
necessary that the imaginary part of any possible frequency w be negative. The
perturbations that arise will then decrease exponentially with time.

Such a mathematical investigation of stability is extremely complicated, however. The
theoretical problem of the stability of steady flow past bodies with finite dimensions has
not yet been solved. It is certain that steady flow is stable for sufficiently small Reynolds
numbers. The experimental data seem to indicate that, when R increases, it eventually
reaches a value R, (the critical Reynolds number) beyond which the flow is unstable with
respect to infinitesimal disturbances. For sufficiently large Reynolds numbers (R > R_,),
steady flow past solid bodies is therefore impossible. The critical Reynolds number is not,
of course, a universal constant, but takes a different value for each type of flow. These
values appear to be of the order of 10 to 100; for example, in flow across a cylinder
undamped non-steady flow has been observed for R = ud/v ~ 30, d being the diameter of
the cylinder.

Let us now consider the nature of the non-steady flow which is established as a result of
the instability of steady flow at large Reynolds numbers (L. D. Landau 1944). We begin by
examining the properties of this flow at Reynolds numbers only slightly greater than R ;.
For R < R, the imaginary parts of the complex frequencies w = w,; + iy, for all possible
small perturbations are negative (y, < 0). For R = R there is one frequency whose
imaginary part is zero. For R > R, the imaginary part of this frequency is positive, but,
when R is close to R, y, is small in comparison with the real part w,.t The function v,
corresponding to this frequency is of the form

Vi = A(t)f(x9 Vs Z), (26'5)
where f is some complex function of the coordinates, and the complex amplitude A(t) is}
A(t) = constant x e’1'e ™!, (26.6)

This expression for A(t)is actually valid, however, only during a short interval of time after
the disruption of the steady flow; the factor '’ increases rapidly with time, whereas the
method of determining v, given above, which leads to expressions like (26.5) and (26.6),
applies only when | v, | is small. In reality, of course, the modulus | A4 | of the amplitude of
the non-steady flow does not increase without limit, but tends to a finite value. For R close
to R, (wealways mean, of course, R > R_;), this finite value is small, and can be determined
as follows.

Let us find the time derivative of the squared amplitude | A |*. For very small values of ¢,
when (26.6) is still valid, we have d | 4 |*/dt = 2y, | A |>. This expression is really just the
first term in an expansion in series of powers of 4 and A*. As the modulus | A | increases
(still remaining small), subsequent terms in this expansion must be taken into account. The

t The set (or spectrum) of all possible perturbation frequencies for a given type of flow includes both separate
isolated values (the discrete spectrum) and the whole of various frequency ranges (the continuous spectrum). It
seems that for flow past finite bodies the frequencies with y, > 0 can occur only in the discrete spectrum. The
reason is that the perturbations corresponding to the frequencies in the continuous spectrum are in general not
zero at infinity, but the unperturbed flow there is certainly a stable homogeneous plane-parallel flow.

1 As usual, we understand the real part of (26.6).
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next terms are those of the third order in A. However, we are not interested in the exact
value of the derivative d | 4 |?/dt, but in its time average, taken over times large compared
with the period 2n/w, of the factor e-#:*; we recall that, since @, > 7, this period is small
compared with the time 1/y, required for the amplitude modulus |A| to change
appreciably. The third-order terms, however, must contain the periodic factor, and
therefore vanish on averaging.t The fourth-order terms include one which is proportional
to A2A*? = | A|* and which does not vanish on averaging. Thus we have as far as fourth-
order terms

d|AP/dt =2y, | AP -« A", (26.7)

where o (the Landau constant) may be either positive or negative.

We are interested in the case where an infinitesimal perturbation (superimposed on the
original flow) first becomes unstable for R > R_,. This corresponds to « > 0. We have not
put bars above | 4 |> and | 4 |* in (26.7), since the averaging is only over time intervals short
compared with 1/y,. For the same reason, in solving the equation we proceed as if the bar
were omitted above the derivative also. The solution of equation (26.7) is

1/]A|* = a/2y, +constant x e~ 2"",
Hence it is clear that | A | tends asymptotically to a finite limit:
| A Izmax = 2)}1/a' (268)

The quantity y, is some function of the Reynolds number. Near R, it can be expanded as
a series of powers of R —R_,. But y, (R) = 0, by the definition of the critical Reynolds
number. Hence we have to the first order

y; = constant X (R—R,). (26.9)

Substituting this in (26.8), we see that the modulus | 4 | of the amplitude is proportional to
the square root of R —R:

| A lmax < / (R =Ry,)- (26.10)

Let us now briefly discuss the case where a < 0in (26.7). The two terms in that expansion
are then insufficient to determine the limiting amplitude of the perturbation, and we have
to include a negative term of higher order; let this be — 8| A|® with f > 0, which gives

_ el

L)
lAlzmax—zﬂi (Z%z—+—|;—|y,), (26.11)

with y, as in (26.9). The dependence is shown in Fig. 13b; Fig. 13a corresponds to « > 0,
(26.10). When R > R, there can be no steady flow; when R = R, the perturbation
discontinuously reaches a non-zero amplitude, though this is still assumed so small that
the expansion in powers of | 4|2 is valid.} In the range R’ < R < R, the unperturbed
flow is metastable, being stable with respect to infinitesimal perturbations but unstable
with respect to those with finite amplitude (the continuous curve; the broken curve shows
the unstable branch).

1 Strictly speaking, the third-order terms give, on averaging, not zero, but fourth-order terms, which we
suppose included among the fourth-order terms in the expansion.

1 Such systems are said to have hard self-excitation, in contrast to those with soft self-excitation, which are
unstable with respect to infinitesimal perturbations.
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Let us now return to the non-steady flow which occurs when R > R_,, as a result of the
instability with respect to small perturbations. For R close to R, the latter flow can be
represented by superposing on the steady flow v, (r) a periodic flow v, (r, t), with a small but
finite amplitude which increases with R as in (26.10). The velocity distribution in this flow is
of the form

v, = f(r)ei@it+h), (26.12)

where f is a complex function of the coordinates, and f, is some initial phase. For large
R —R;, the separation of the velocity into v, and v, is no longer meaningful. We then have
simply some periodic flow with frequency w,. If, instead of the time, we use as an
independent variable the phase ¢, = w,t + f8,, then we can say that the function v(r, ¢, )isa
periodic function of ¢,, with period 2z. This function, however, is no longer a simple
trigonometrical function. Its expansion in Fourier series

v="Y A, (r)e-i¢P (26.13)

(where the summation is over all integers p, positive and negative) includes not only terms
with the fundamental frequency w,, but also terms whose frequencies are integral
multiples of o, .

Equation (26.7) determines only the modulus of the time factor A(t), and not its phase
¢,, which remains essentially indeterminate, and depends on the particular initial
conditions which happen to occur at the instant when the flow begins. The initial phase 8,
can have any value, depending on these conditions. Thus the periodic flow under
consideration is not uniquely determined by the given steady external conditions in which
the flow takes place. One quantity—the initial phase of the velocity—remains arbitrary.
We may say that the flow has one degree of freedom, whereas steady flow, which is entirely
determined by the external conditions, has no degrees of freedom.

PROBLEM

Derive the equation for the energy balance between the unperturbed flow and a superimposed perturbation,
without assuming that the latter is weak.

SoLuTION. Substituting (26.2) in (26.1), but not omitting the term of the second order in v,, we have
Ov( /0t + (vo - grad)v, + (v, - grad)vy + (v, -grad)v, = —gradp, + (1/R)Av,; 1)
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all quantities are assumed to be brought to dimensionless form, as described in §19. Taking the scalar product of
this equation with v, and using the equations divv, = 0, divy, = 0, we obtain

6170,' 1 (3171,- 6vl,~ 0 1 a"711'

0
5(%012) = —qulkg;: —ia_xkg;: +a;{—%vlz('-’0k+vu)—l’1”1k + 'ﬁvua—xh}-

The last term on the right gives zero on integration over the whole region of the flow, since v, = v, = 0 on the
boundary surfaces of the region or at infinity. This gives as the required relation

E, = T—-D/R, 2
0 i 0 i 2

E1 = J‘%Ulzdi”, T=— J‘qu)k&dVa D= J‘(i) dv. (3)
axk axk

The functional T represents the energy exchange between the unperturbed flow and the perturbation, and may
have either sign. The functional D is the dissipative energy loss, and D > 0 always. Note that the term in (1) non-
linear in v, does not contribute to the relation (2).

The relation (2) provides a lower limit of R, (O. Reynolds 1894; W. M’F. Orr 1907): the derivative dE, /dt must
be negative, i.e. the perturbation decreases with time, if R < Ry, where
R = min(D/T), @

the minimum of the functional being taken with respect to functions v, (r) which satisfy the boundary conditions
and the equation div v, = 0. The existence of a finite minimum arises mathematically from the fact that Tand D
are both second-order homogeneous functionals. This proves the existence of a lower limit of R for metastability,
below which the unperturbed flow is stable with respect to any perturbations. The “energy estimate” given by (4)
is, however, much too low in the majority of cases.

§27. Stability of rotary flow

To investigate the stability of steady flow between two rotating cylinders (§18) in the
limit of very large Reynolds numbers, we can use a simple method like that used in §4 to
derive the condition for mechanical stability of a fluid at rest in a gravitational field
(Rayleigh 1916). The principle of the method is to consider any small element of the fluid
and to suppose that this element is displaced from the path which it follows in the flow
concerned. As a result of this displacement, forces appear which act on the displaced
element. If the original flow is stable, these forces must tend to return the element to its
original position.

Each fluid element in the unperturbed flow moves in a circle r = constant about the axis
of the cylinders. Let u(r) = mr?¢ be the angular momentum of an element with mass m, ¢
being the angular velocity. The centrifugal force acting on it is u?/mr3; this force is
balanced by the radial pressure gradient in the rotating fluid. Let us now suppose that a
fluid element at a distance r, from the axis is slightly displaced from its path, being moved
to a distance r > r, from the axis. The angular momentum of the element remains equal to
its original value p, = u(ro). The centrifugal force acting on the element in its new position
is therefore py?/mr>. In order that the element should tend to return to its initial position,
this force must be less than the equilibrium value u?/mr® which is balanced by the pressure
gradient at the distance r. Thus the necessary condition for stability is u? — py? > 0.
Expanding u(r) in powers of the positive difference r — r,, we can write this condition in the
form

udu/dr > 0. (27.1)
According to formula (18.3), the angular velocity ¢ of the moving fluid particles is

QR —Q R* (@ —Q)R,’R,? 1

P RIR RZ-R? 1
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Calculating u = mr?¢ and omitting factors which are certainly positive, we can write the
condition (27.1) as

(Q,R,2—Q, R, %) > 0. (27.2)

The angular velocity & varies monotonically from Q, on the inner cylinder to Q, on the
outer cylinder. If the two cylinders rotate in opposite directions, i.e. if Q, and Q, have
opposite signs, the function ¢ changes sign between the cylinders, and its product with the
constant number Q, R,%2 —Q, R,? cannot be everywhere positive. Thus in this case (27.2)
does not hold at all points in the fluid, and the flow is unstable.

Now let the two cylinders be rotating in the same direction; taking this direction of
rotation as positive, we have Q, > 0, Q, > 0. Then  is everywhere positive, and for the
condition (27.2) to be fulfilled it is necessary that

Q,R,2 > Q, R, (27.3)

If Q,R,% < Q, R,? the flow is unstable. For example, if the outer cylinder is at rest
(Q, = 0), while the inner one rotates, then the flow is unstable. If, on the other hand, the
inner cylinder is at rest (Q, = 0), the flow is stable.

It must be emphasized that no account has been taken, in the above arguments, of the
effect of the viscous forces when the fluid element is displaced. The method is therefore
applicable only for small viscosities, i.e. for large R.

To investigate the stability of the flow for any R, it is necessary to follow the general
method, starting from equations (26.4); for flow between rotating cylinders, this was first
done by G. 1. Taylor (1924). In the present case the unperturbed velocity distribution v,
depends only on the (cylindrical) radial coordinate r, and not on the angle ¢ or the axial
coordinate z. The complete set of independent solutions of equations (26.4) may therefore
be sought in the form

v, (1, @, 2) = et ONf (), (27.4)

the direction of the vector f(r) being arbitrary. The wave number k, which takes a
continuous range of values, determines the periodicity of the perturbation in the z-
direction. The number n takes only integral values O, 1, 2, ..., as follows from the
condition for the function to be single-valued with respect to the variable ¢; the valuen = 0
corresponds to axially symmetrical perturbations. The permissible values of the frequency
w are found by solving the equations with the necessary boundary conditions (v, = 0 for
r = R, and r = R;). The problem thus formulated yields in general, for given n and k, a
discrete series of eigenfrequencies w = w,/)(k), where j labels the branches of the function
w,(k); these frequencies are in general complex.

The role of the Reynolds number in this case may be taken by Q, R,%/v or Q, R,?/v for
given values of the ratios R, /R, and Q, /Q, which determine the type of flow. Let us follow
the change of some eigenfrequency w = w,"’(k) as the Reynolds number gradually
increases. The point where instability appears (for a particular form of perturbation) is
determined by the value of R for which the function y(k) = im w first becomes zero for
some k. For R < R_, the function y(k) is always negative, but for R > R, we havey > 0in
some range of k. Let k_ be the value of k for which y(k) =0 when R =R. The
corresponding function (27.4) gives the nature of the flow which occurs (superimposed on
the original flow) in the fluid at the instant when the original flow ceases to be stable; it is
periodic along the axis of the cylinders, with period 27/k, . The actual limit of stability is, of
course, determined by the form of the perturbation, i.e. the function w,”’(k), for which R ;
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is least, and it is these “most dangerous” perturbations that are of interest here. As a rule
(see below) they are axially symmetrical. Because of the great complexity of the calculation,
a fairly complete study of them has been made only in the case where the space between the
cylinders is narrow: h = R, — R; < R = (R, + R;). The results are as follows.f

Itis found that a purely imaginary function w (k) corresponds to the solution which gives
the smallest R_,. Hence, when k = k_, not only im o but e itself is zero. This means that
the first instability of steady rotary flow leads to the appearance of another flow which is
also steady.f It consists of toroidal Taylor vortices arranged in a regular manner along the
cylinders. For the case where the two cylinders rotate in the same direction, Fig. 14 shows
schematically the projections of the streamlines of these vortices on the meridional cross-

FiG. 14
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T A detailed treatment is given by N. E. Kochin, 1. A. Kibel’ and N. V. Roze, Theoretical Hydromechanics
(Teoreticheskaya gidromekhanika), Part 2, Moscow 1963; S. Chandrasekhar, Hydrodynamic and
Hydromagnetic Stability, Oxford 1961; P. G. Drazin and W. H. Reid, Hydrodynamic Stability, Cambridge 1981.

1 In such cases there is said to be exchange of stabilities. The experimental and numerical results for several
particular cases suggest that this property is a general one for the flow considered and does not depend on h being
small.
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section plane of the cylinders; the velocity v, actually has an azimuthal component also.
The length 2n/k, of each period contains two vortices with opposite directions of rotation.

For R slightly greater than R, there is not one value of k but a whole range, for which
im o > 0. However, it should not be thought that the resulting flow will be a superposition
of flows with various periodicities. In reality, for each R a flow with a definite periodicity
occurs which stabilizes the total flow. This periodicity, however, cannot be determined
from the linearized equation (26.4).

Figure 15 shows the approximate form of the curve separating the regions of unstable
(shaded) and stable flow for a given value of R, /R,. The right-hand branch of the curve,
corresponding to rotation of the two cylinders in the same direction, is asymptotic to the
line Q,R,? = Q, R, ?; this property is in fact a general one, not dependent on the smallness
of h. When the Reynolds number increases, for a given type of flow, we move upwards
along a line through the origin which corresponds to the given value of Q, /Q, . In the right-
hand part of the diagram, such lines for which Q, R,%/Q, R,? > 1 do not meet the curve
which bounds the region of instability. If, on the other hand, Q, R,%/Q, R,2 < 1, then for
sufficiently large Reynolds numbers we enter the region of instability, in accordance with
the condition (27.3). In the left-hand part of the diagram (Q, and Q, with opposite signs),
any line through the origin meets the boundary of the shaded region; that is, when the
Reynolds number is sufficiently large steady flow ultimately becomes unstable for any
ratio |€2,/Q, |, again in agreement with the previous results. For Q, = 0 (when only the
inner cylinder rotates), instability sets in when the Reynolds number, defined as
R =hQ, R,/v,is

R, = 412/ (R/h). (27.5)

In the flow under consideration, the viscosity has a stabilizing effect: a flow stable when
v = O remains stable when the viscosity is taken into account, and one that is unstable may
become stable for a viscous fluid.

There have been no systematic studies of perturbations without axial symmetry in flow
between rotating cylinders. The results of calculations for particular cases suggest that the
axially symmetrical perturbations always remain the most dangerous on the right-hand
side of Fig. 15. On the left-hand side, however, when | Q,/Q, |is sufficiently large, the form
of the boundary curve may be somewhat changed when perturbations without axial
symmetry are taken into account. The real part of the perturbation frequency then does
not tend to zero, and so the resulting flow is not steady, which considerably alters the
nature of the instability.
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The limiting case (as h — 0) of flow between rotating cylinders is flow between two
parallel planes in relative motion (see §17). This flow is stable with respect to infinitely
small perturbations for any value of R = uh/v, where u is the relative velocity of the planes.

§28. Stability of flow in a pipe

The steady flow in a pipe discussed in §17 loses its stability in an unusual manner. Since
the flow is uniform in the x-direction (along the pipe), the unperturbed velocity
distribution v, is independent of x. Similarly to the procedure in §27, we can therefore seek
solutions of equations (26.4) in the form

v, = e®x"90f(y, 2) (28.1)

Herealso thereisa valueR = R for which y = im w first becomes zero for some value of k.
It is of importance, however, that the real part of the function w(k) is not now zero.

For values of R only slightly exceeding R , the range of values of k for which y (k) > Ois
small and lies near the point for which y (k) is a maximum, i.e. dy/dk = 0 (as seen from Fig.
16). Let a slight perturbation occur in some part of the flow; it is a wave packet obtained by
superposing a series of components with the form (28.1). In the course of time, the
components for which y (k) > 0 will be amplified, while the remainder will be damped. The
amplified wave packet thus formed will also be carried downstream with a velocity equal to
the group velocity dw/dk of the packet (§67); since we are now considering waves whose
wave numbers lie in a small range near the point where dy/dk = 0, the quantity

dw/dk ~ d(re w)/dk (28.2)

is real, and is therefore the actual velocity of propagation of the packet.

/\ R=Rcr
R<R¢,

FiG. 16

This downstream displacement of the perturbations is very important, and causes the
loss of stability to be totally different from that described in §27.

Since the positiveness of im w now implies only an amplification of the perturbation as it
moves downstream, there are two possibilities. In one case, despite the movement of the
wave packet, the perturbation increases without limit in the course of time at any point
fixed in space; this kind of instability with respect to any infinitesimal perturbations will be
called absolute instability. In the other case, the packet is carried away so swiftly that at any
point fixed in space the perturbation tends to zero as t — oo; this kind will be called
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convected instability.T For Poiseuille flow, it appears that the second kind occurs; see the
next footnote but four.

The difference between the two cases is a relative one, in the sense that it depends on the
choice of the frame of reference with respect to which the instability is considered: an
instability convected in one frame becomes absolute in another frame moving with the
packet, and an absolute instability becomes convected in a frame that moves away from
the packet with sufficient speed. In the present case, however, the physical significance of
the difference is given by the existence of a preferred frame of reference in which the
instability should be regarded, namely that in which the pipe walls are at rest. Moreover,
since actual pipes have a large but finite length, a perturbation arising anywhere may in
principle be carried out of the pipe before it actually disrupts the laminar flow.

Since the perturbations increase with the coordinate x (downstream), and not with time
at a given point, it is reasonable to investigate this type of instability as follows. Let us
suppose that, at a given point, a continuously acting perturbation with a given frequency w
is applied to the flow, and examine what will happen to this perturbation as it is carried
downstream. Inverting the function w (k), we find what wave number k corresponds to the
given (real) frequency w. Ifim k < 0, the factor ¢~ increases with x, i.e. the perturbation is
amplified downstream. The curve in the wR-plane given by the equation im k(w, R) = 0,
called the neutral stability curve or neutral curve, defines the region of stability, and
separates, for each R, the frequencies of perturbations which are amplified and damped
downstream.

The actual calculations are extremely complicated. A complete analytical investigation
has been made only for plane Poiseuille flow (between two parallel planes; C. C. Lin 1945).
We shall give the results here. }

The (unperturbed) flow between the planes is uniform not only in the direction of flow
(along the x-axis) but throughout the xz-plane (the y-axis being perpendicular to the
planes). We can therefore seek solutions of equations (26.4) in the form

vV, = ei(k,x+k,z—w¢)f(y) (283)

with the wave vector k having any direction in the xz-plane. We are interested, however,
only in the growing perturbations that are the first to appear as R increases, since these
govern the limit of stability. It can be shown that, for a given value of the wave number, the
first perturbation not damped has k in the x-direction, with f, = 0. It is therefore sufficient
to consider only perturbations in the xy-plane, independent of z and two-dimensional (like
the unperturbed flow).} ¥

The neutral curve for flow between planes is schematically shown in Fig. 17. The shaded
area within the curve is the region of instability.§ The smallest value of R at which

T The general method of establishing the type of instability is described in PK, §62.

1 See C. C. Lin, The Theory of Hydrodynamic Stability, Cambridge 1955. A discussion of these and later
studies of the topic is to be found in the book by Drazin and Reid mentioned in a previous footnote.

+1 The proof of this statement (H. B. Squire 1933) is that the equations (26.4) with a perturbation having the
form (28.3) can be brought to a form in which they differ from the equations for two-dimensional perturbations
only in that R is replaced by R cos¢, ¢ being the angle between k and v, in the xz-plane. The critical number R,
for three-dimensional perturbations with a given k is therefore R, = R, sec ¢ > R, where R, is calculated for
two-dimensional perturbations.

§ The neutral curve in the kR-plane has a similar form. Since both w and k are real on the neutral curve, the
curves in the two planes represent the same dependence expressed in terms of different variables.
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undamped perturbations are possible is found to be R, = 5772 according to later and
more accurate calculations by S. A. Orszag (1971); the Reynolds number is here defined as

R=U_ h/2v, (28.4)

where U, is the maximum flow velocity and 4 h is half the distance between the planes, i.e.
the distance over which the velocity increases from zero to its maximum value.t The value
R = R, corresponds to a perturbation wave number k_ = 2-04/h. As R — oo, the two
branches of the neutral curve approach the R-axis asymptotically, with wh/U_,, ~ R ™3/
and R73/7 for the upper and lower branches respectively; on each branch, w and k are
related by wh/U ~ (kh).

Thus, for any non-zero frequency w that does not exceed a certain maximum value
(~ U/h), there is a finite range of R values in which the perturbations are amplified.} It is
noteworthy that in this case a small but finite viscosity of the fluid has, in a sense, a
destabilizing effect in comparison with the situation for a strictly ideal fluid.t+ For, when
R — o0, perturbations with any finite frequency are damped, but when a finite viscosity is
introduced we eventually reach a region of instability; a further increase in the viscosity
(decrease in R) finally brings us out of this region.

For flow in a pipe with circular cross-section, no complete theoretical study of the
stability has yet been made, but the available results give good reason to suppose that the
flow has stability (both absolute and convected) with respect to infinitesimal perturbations
at any Reynolds number. When the unperturbed flow is axially symmetrical, the
perturbations may be sought in the form

v, = el ke on g (p) (28.5)

asin (27.4). It may be regarded as proved that axially symmetrical perturbations (n = 0) are
always damped. No undamped perturbations have been found, either, among those

t Another definition of R for two-dimensional Poiseuille flow is also used in the literature: R = Uh/v, where U
is the fluid velocity averaged over the cross-section. Since U = 4 U, , we have Uh/v = 4R/3 when R is defined
according to (28.4).

1 The proof that the instability of two-dimensional Poiseuille flow is convected has been given by S. V.
Iordanskii and A. G. Kulikovskii, Soviet Physics JETP 22, 915, 1966. The proof relates, however, only to the
range of very large R, where the two branches of the neutral curve are close to the abscissa axis; that is, kh < 1 on
each branch. The problem remains unresolved for R values such that kh ~ 1 on the neutral curve.

t+ This property was discovered by W. Heisenberg (1924).
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without axial symmetry that have been studied (with particular values of n and in
particular Reynolds number ranges). The stability of flow in a pipe is also suggested by the
fact that, when perturbations at the entrance to the pipe are very carefully prevented,
laminar flow can be maintained up to very large values of R, in practice up to R >~ 103,

Where R=U_ d/2v=Udv, (28.6)

d being the pipe diameter and U, the fluid velocity on the pipe axis.

Flow between planes and in a circular pipe may be regarded as limiting cases of flow in
an annular pipe between two coaxial cylindrical surfaces with radii R, and R, (R, > R,).
When R, = 0 we have a circular pipe, and the limit R, — R, corresponds to flow between
planes. There appears to be a critical R, for all non-zero values of R;/R, < 1; when
R;/R; -0, R, — 0.

For each of these Poiseuille flows there is also a critical number R_,’ which determines
the limit of stability with respect to perturbations with finite amplitude. When R < R_/,
undamped non-steady flow in the pipe is impossible. If turbulent flow occursin any section
of the pipe, then for R < R’ the turbulent region will be carried downstream and will
diminish in size until it disappears completely; if, on the other hand, R > R_/, the turbulent
region will enlarge in the course of time to include more and more of the flow. If
perturbations of the flow occur continually at the entrance to the pipe, then for R < R_’
they will be damped out at some distance down the pipe, no matter how strong they are
initially. If, on the other hand, R > R_’, the flow becomes turbulent throughout the pipe,
and this can be achieved by perturbations that are weaker, if R is greater. In the range
between R, and R, laminar flow is metastable. For a pipe with circular cross-section,
undamped turbulence has been observed for R ~ 1800, and for flow between parallel
planes for R >~ 1000 and upwards.

Since the disruption of laminar flow in a pipe is “hard”, it is accompanied by a
discontinuous change in the drag force. For flow in a pipe with R > R_’ there are
essentially two different dependences of the drag on R, one for laminar and the other for
turbulent flow (see §43). The drag has a discontinuity, whatever the value of R at which the
change from one to the other occurs.

One further remark may be made, to complete this section. The limit of stability (neutral
curve) obtained for flow in an infinitely long pipe has also another significance. Let us
consider flow in a pipe whose length is very great (in comparison with its width) but finite.
Let certain boundary conditions be imposed at each end, by specifying the velocity profile
(for example, we can imagine the ends of the pipe to be closed with porous seals which
create a uniform profile); everywhere except near the ends of the pipe, the unperturbed
velocity profile may be taken to have the Poiseuille form independent of x. For a finite
system thus defined, we can propose the problem of stability with respect to infinitesimal
perturbations; the general procedure for establishing the condition for such global stability
is described in PK, §65. It can be shown that the above-mentioned neutral curve for an
infinite pipe is also the limit of global stability in a finite pipe, whatever the specific
boundary conditions at its ends.t

§29. Instability of tangential discontinuities

-Flows in which two layers of incompressible fluid move relative to each other, one
“sliding” on the other, are unstable if the fluid is ideal; the surface of separation between

t See A. G. Kulikovskii, Journal of Applied Mathematics and Mechanics 32, 100, 1968.
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these two fluid layers would be a surface of tangential discontinuity, on which the fluid
velocity tangential to the surface is discontinuous (H. Helmholtz 1868, W. Kelvin 1871).
We shall see below (§35) what is the actual nature of the flow resulting from this instability;
here we shall prove the above statement.

If we consider a small portion of the surface of discontinuity and the flow near it, we may
regard this portion as plane, and the fluid velocities v, and v, on each side of it as constants.
Without loss of generality we can suppose that one of these velocities is zero; this can
always be achieved by a suitable choice of the coordinate system. Let v, = 0, and v, be
denoted by vsimply; we take the direction of v as the x-axis,and the z-axis along the normal
to the surface.

Let the surface of discontinuity receive a slight perturbation, in which all quantities—
the coordinates of points on the surface, the pressure, and the fluid velocity—are periodic
functions, proportional to ¢'**~ 9, We consider the fluid on the side where its velocity is v,
and denote by v’ the small change in the velocity due to the perturbation. According to the
equations (26.4) (with constant v, = v and v =0), we have the following system of
equations for the perturbation v':
ov gradp’

at+(v-grad)v=— ,

divy =0,

Since v is along the x-axis, the second equation can be rewritten as

ov oV gradp’

—+v— =~ :

ot o0x P
If we take the divergence of both sides, then the left-hand side gives zero by virtue of
divy = 0, so that p’ must satisfy Laplace’s equation:

Ap’ = 0. (29.2)

Let { = {(x,t) be the displacement in the z-direction of points on the surface of
discontinuity, due to the perturbation. The derivative 0(/dt is the rate of change of the
surface coordinate { for a given value of x. Since the fluid velocity component normal to
the surface of discontinuity is equal to the rate of displacement of the surface itself, we have
to the necessary approximation

(29.1)

8L /ot = v, — vdl | x, (29.3)

where, of course, the value of v', on the surface must be taken.

We seek p’ in the form p’ = f(z) ¢'**~ ", Substituting in (29.2), we have for f(z) the
equation d? f/dz* —k? f = 0, whence f = constant x et*:. Suppose that the space on the
side under consideration (side 1) corresponds to positive values of z. Then we must take
f = constant x e”*, so that

P’y = constant x e"*x~ @V g~kz, (29.4)
Substituting this expression in the z-component of equation (29.1), we findt

v, =kp'y/ip, (kv — w). (29.5)

t The case kv = w, though possible in principle, is not of interest here, since instability can arise only from
complex frequencies w, not from real w.
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The displacement { may also be sought in a form proportional to the same exponential
factor ¢**~*? and we obtain from (29.3) v, = i{ (kv — w). This gives, instead of (29.5),

Py = —{pi(kv —w)?/k. (29.6)

The pressure p’, on the other side of the surface is given by a similar formula, where now
v =0 and the sign is changed (since in this region z < 0, and all quantities must be
proportional to €', not e **). Thus

P2 = {p0?/k. (29.7)

We have written different densities p; and p, in order to include the case where we have a
boundary separating two different immiscible fluids.

Finally, from the condition that the pressures p’, and p’, be equal on the surface of
discontinuity, we obtain p, (kv — w)? = — p,w?, from which the desired relation between
w and k is found to be

o = ko Pr TN (P1P2)
pP1t P2

We see that w is complex, and there are always w having a positive imaginary part. Thus
tangential discontinuities are unstable, even with respect to infinitely small perturbations.
In this form, the result is true for very small viscosities. In that case, it is meaningless to
distinguish convected and absolute instability, since as k increases the imaginary part of @
increases without limit, and hence the amplification coefficient of the perturbation as it is
carried along may be as large as we please.

When finite viscosity is taken into account, the tangential discontinuity is no longer
sharp; the velocity changes from one value to another across a layer with finite thickness.
The problem of the stability of such a flow is mathematically entirely similar to that of the
stability of flow in a laminar boundary layer with a point of inflexion in the velocity profile
(§41). The experimental and numerical results indicate that instability sets in very soon,
and perhaps is always present.}

(29.8)

§30. Quasi-periodic flow and frequency locking?

In the following discussion (§§30-32) it will be convenient to use certain geometrical
representations. To do so, we define the mathematical concept of the space of states for the
fluid, each point in which corresponds to a particular velocity distribution or velocity field
in the fluid. States at adjacent instants then correspond to adjacent points.§

A steady flow is represented by a point, and a periodic flow by a closed curve in the space
of states; these are called respectively a limit point or critical point, and a limit cycle. If the

1 If the direction of the wave vector k (in the xy-plane) is not the same as that of v but is at an angle ¢ toit, vin
(29.8) is replaced by v cos ¢, as is clear from the fact that the unperturbed velocity occurs in the initial linearized
Euler’s equation only in the combination v - grad. Such perturbations also are evidently unstable.

I Numerical calculations of the stability have been made for plane-parallel flows whose velocities vary
between + v, according to a law such as v = v, tanh (z/h); the Reynolds number is then R = vy h/v. The neutral
curve in the kR-plane starts from the origin, so that for each R value there is a range of k values (increasing with R)
for which the flow is stable.

18§ 30-32 were written jointly with M. 1. Rabinovich.

§ Inthe mathematical literature, this functional space with an infinity of dimensions (or the spaces with a finite
number of dimensions which may replace it in some cases; see below) is often called phase space. We shall avoid
this term here, in order to prevent confusion with its more specific usual meaning in physics.
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flows are stable, then adjacent curves representing the establishment of the flow tend to a
limit point or cycle as t — co.

A limit cycle (or point) has in the space of states a certain domain of attraction, and paths
which begin in that region will eventually reach the limit cycle. In this connection, the limit
cycle is called an attractor. It should be emphasized that for flow in a given volume with
given boundary conditions (and a given value of R) there may be more than one attractor.
Cases can occur where the space of states contains various attractors, each with its own
domain of attraction. That is, when R > R, there may be more than one stable flow
regime, and the different regimes occur in accordance with the way in which the R value is
reached. It should be emphasized that these various stable regimes are solutions of a non-
linear set of equations of motion.t

Let us now consider the phenomena which occur when the Reynolds number is further
increased beyond the critical value at which the periodic flow discussed in §26 is
established. As R increases, a point is eventually reached where this flow in its turn becomes
unstable. The instability should in principle be examined similarly to the procedure in §26
for determining the instability of the original steady flow. The unperturbed flow is now the
periodic flow v, (r, ¢) with frequency w,, and in the equations of motion we substitute
v = v, + v,, where v, is a small correction. For v, we again obtain a linear equation, but the
coefficients are now functions of time as well as of the coordinates, and are periodic
functions of time, with period T} = 2n/w,. The solution of such an equation is to be
sought in the form

v, =II(r, t) e7 ', (30.1)

whereIl(r, t) is a periodic function of time, with the same period 7. The instability again
occurs when there is a frequency @ = w, + iy, whose imaginary part y, > 0; the real part
w, gives the new frequency which appears.

During the period T, the perturbation (30.1) changes by a factor u = e~*", This factor
is called the multiplier of the periodic flow, and is a convenient characteristic of the
amplification or damping of perturbations in that flow. A periodic flow of a continuous
medium (a fluid) corresponds to an infinity of multipliers and an infinity of possible
independent perturbations. It ceases to be stable at the value R, , for which one or more
multipliers reach unit modulus, i.e. u crosses the unit circle in the complex plane. Since the
equations are real, the multipliers must cross this circle in complex conjugate pairs, or
singly with real values + 1 or — 1. The loss of stability of the periodic flow is accompanied
by a particular qualitative change in the path pattern in the space of states near the now
unstable limit cycle; this change is called a local bifurcation. The nature of the bifurcation is
largely determined by the points at which the multipliers cross the unit circle.f

Let us consider the bifurcation when the unit circle is crossed by a pair of complex
conjugate multipliers having the form u = exp (F 2nai) where a is irrational. This causes
the occurrence of a secondary flow with a new independent frequency w, = aw,, leading
to a quasi-periodic flow with two incommensurate frequencies. The counterpart of this
flow in the space of states is a path in the form of an open winding on a two-dimensional

t This is the situation, for example, when Couette flow ceases to be stable; the new flow pattern that is
established depends in fact on the history of the process whereby the cylinders are caused to rotate with particular
angular velocities.

1 A multiplier cannot be zero, since a perturbation cannot disappear in a finite time (one period T;).
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torust, the now unstable limit cycle being the generator of the torus; the frequency w,
corresponds to rotation round the generator, and w, to rotation round the torus (Fig. 18).
Just as, when the first periodic flow appeared, there was one degree of freedom, we now
have two arbitrary quantities (phases), so that the flow has two degrees of freedom. The
loss of stability of a periodic motion, accompanied by the creation of a two-dimensional
torus, is a typical phenomenon in fluid dynamics.

Let us consider a hypothetical complication of the flow resulting from such a
bifurcation, when the Reynolds number increases further (R >R ,). It would be
reasonable to suppose that, as R goes on increasing, new periods will successively appear.
In terms of geometrical representations, this would signify loss of stability of the two-
dimensional torus and the formation near it of a three-dimensional one, followed by a
further bifurcation and its replacement by a four-dimensional one, and so on. The intervals
between the Reynolds numbers corresponding to the successive appearance of new
frequencies rapidly become shorter, and the flows are on smaller and smaller scales. The
flow thus rapidly acquires a complicated and confused form, and is said to be turbulent, in
contrast to the regular laminar flow, in which the fluid moves, as it were, in layers having
different velocities.

Assuming now that this way or scenario of development of turbulence is in fact
possible,I we write the general form of the function v(r,t), whose time dependence is
governed by some number N of different frequencies w;. It may be regarded as a function
of N different phases ¢; = w;t + B; (and of the coordinates), periodic in each with period
2n. Such a function may be expressed as a series

V(l’, t) = Z Aple---PN(r) exp { _l Z pid’i}a (302)
i=1
which is a generalization of (26.13), the summation being over all integers py, p,, - - - , Px-
The flow described by this formula involves N arbitrary initial phases f; and has N degrees
of freedom.}+

T We use the mathematical terminology, in which torus denotes a surface without the enclosed volume. Thus a
two-dimensional torus is the two-dimensional surface of a three-dimensional “doughnut”.

1 It was proposed by L. D. Landau (1944) and independently by E. Hopf (1948).

11 If wetake the phases ¢; as coordinates representing the path on an N-dimensional torus, the corresponding

velocities are constants ¢; = w,. For this reason, quasi-periodic flow can be described as movement on a torus
with constant velocity.
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States whose phases differ only by an integral multiple of 2z are physically identical.
Thus the essentially different values of each phase lie in the range 0 < ¢; < 2n. Let us
consider a pair of phases, ¢, = w,t+ B, and ¢, = w,t + f,. At some instant, let ¢, = a.
Then ¢, will have the “same” value as « at every time

- 1
z ﬁ~1-+27rs—,

@, W,

where s is any integer. At these times,
¢, = B2+ (wy/w,) (2 — By + 2ns).

The different frequencies are incommensurate, and therefore w,/w, is irrational. If we
reduce each value of ¢, to a value in the range from 0 to 27 by subtracting an appropriate
integral multiple of 2x, we therefore find that, when s varies from 0 to oo, ¢, takes values
indefinitely close to any given number in that range. That is, in the course of a sufficiently
long time ¢, and ¢, simultaneously take values indefinitely close to any specified pair. The
same is true of every phase. In this turbulence model, therefore, in the course of a
sufficiently long time, the fluid passes through states indefinitely close to any specified state
defined by any possible set of simultaneous values of the phases ¢;. The time to do so,
however, increases very rapidly with N and becomes so great that in practice no trace of
any periodicity remains.?}

It should be emphasized here that the path of turbulence development discussed above
is essentially based on linear treatments. It has in fact been assumed that, when new
periodic solutions appear through the evolution of secondary instabilities, the already
existing periodic solutions do not disappear, but on the contrary remain almost
unchanged. In this model, turbulent flow is just a superposition of a large number of such
unchanged solutions. In general, however, the nature of the solutions changes when the
Reynolds number increases and they cease to be stable. The perturbations interact, and this
may either simplify or complicate the flow. Here is an illustration of the first possibility.

Let us take a simple case by supposing that the perturbed solution contains only two
independent frequencies. As already mentioned, the geometrical representation of such a
flow is an open winding on a two-dimensional torus. A perturbation with frequency w,
arising at R = R; ; may naturally be assumed to be stronger near R = R, , (Where the
perturbation with frequency w, arises) and therefore taken as unchanged for relatively
small changes in R in that neighbourhood. Then, to describe the evolution of the
perturbation with frequency w, against the background of the periodic flow with
frequency w,, we use a new variable

ay(t) = |ay ()| e~ 4200, (30.3)

la, | is the shortest distance to the torus generator (the now unstable limit cycle for
frequency w, ),i.€. the relative amplitude of the secondary periodic flow, and ¢, is the phase
of the latter. Let us consider the behaviour of a,(t) at discrete instants that are multiples of

+ In established turbulent flow of this type, the probability for the system (fluid) to be in a given small volume
near a chosen point in the space of phases @,, @,, . . ., @y is the ratio of this volume (6N to the total volume
(2m)N. We can therefore say that in the course of a sufficiently long time the system will be in the neighbourhood
of a given point only for a fraction e ~*N of the time, where x = log (27/d¢).

FM-E
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the period T, = 2n/w,. During one period, the perturbation with frequency w, changes by
a factor u, where

p = |pulexp(—2niw,/w,)

1s its multiplier; after an integral number 7 of such periods, a, is multiplied by u*. We
assume that R — R, is small; the growth factor of the perturbation is then also small, and
{u|—1 is positive but small, so that a, changes only slightly during the period T;; the
phase ¢, varies simply in proportion to 7. We can thus treat the discrete variable 7 as if it
were continuous and represent the variation of a, (t) by a differential equation in 7.

The concept of the multiplier relates to very short time intervals after the onset of
instability, when the perturbation is still describable by linear equations. In this range,
a,(7) varies as u* according to the above discussion, and

da,/dt = a,(r)log u;
just above the critical Reynolds number,
log u = log |p| —2miw, /o,
~ |pul —1-2niw, /w,. (30.4)

This is the first term in an expansion of da,/dt in powers of a, and a,*, and when |a, |
increases (still remaining small) the next term has to be taken into account. The term
containing the same oscillatory factor is the third-order one o a,|a,|>. We thus have

da,/dt = a,log u— P, a;,|a,|?, (30.5)

where B,, like y, is a complex parameter depending on R, with re 8, >0; compare the
corresponding discussion relating to (26.7). The real part of this equation gives
immediately the steady value of the modulus:

|a,@1? = (Jul—1)/re B..

The imaginary part gives an equation for the phase ¢, (7); with the above steady value of
the modulus, it is

d¢,/dr = 2nw,/w, + |a,?|? im B,. (30.6)

According to this, ¢, rotates at a constant rate, a property which is, however, valid only
in the approximation considered: as R — R, increases, the rotation is no longer uniform,
and the rate of rotation on the torus is itself a function of ¢,. To take account of this, we
add on the right-hand side of (30.6) a small perturbation ®(¢,); since all the physically
different values of ¢, lie in the range from 0 to 2z, ® (¢,) is periodic with period 2n. Next,
we approximate the irrational ratio w,/w, by a rational fraction (which can be done with
any desired degree of accuracy): ,/w; = m,/m; + A/2rn, where m, and m, are integers.
The equation then becomes

d¢,/dt = 2nm,/m; + A+ |a,' V12 im B, + D(¢,). (30.7)

We shall now consider phase values only at times that are a multiple of m, T, i.. for values
of t = m, 7, where 7 is an integer. The first term on the right of (30.7) causesina timem, T; a
change in phase by 27m,, that is, by an integral multiple of 2z, which can simply be
omitted. The whole right-hand side is then a small quantity, so that the change in the
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function ¢, (7) can be described by a differential equation in the continuous variable 7:

2902 _ A+10,9 im B+ D () (308)
m, d7
in one step of the discrete variable 7, ¢,/m,; changes only slightly.

In the general case, (30.8) has steady solutions ¢, = ¢,© for which the right-hand side
of the equation is zero. The fact that ¢, is constant for times that are multiples of m, T}
means that thereis a limit cycle on the torus: the path is closed after m, turns. Since ®(¢,) 1s
periodic, such solutions occur in pairs (one pair in the simplest case): one on the ascending
and one on the descending part of ®(¢,). Of these two, only the latter is stable, for which
(30.8) has near ¢, = ¢, the form

d¢,/dT = —constant x (¢, — ¢2(°))

with the constant positive, and there is in fact a solution tending to ¢, = ¢,'%’; the second
solution is unstable, and the constant is negative.

The formation of a stable limit cycle on the torus is equivalent to frequency locking — the
disappearance of the quasi-periodic flow and the establishment of a new periodic one. This
phenomenon, which in a system with many degrees of freedom can occur in many ways,
prevents the occurrence of a flow that is a superposition of flows having a large number of
incommensurate frequencies. In this sense, we can say that the probability of the actual
occurrence of the Landau—Hopf scenario is very small; this, of course, does not mean that
in particular cases several incommensurate frequencies may not appear before locking
occurs.

§31. Strange attractors

There is as yet no complete theory of the origin of turbulence in various types of
hydrodynamic flow. Various scenarios have, however, been proposed for the process
whereby the flow becomes disordered, based mainly on computer studies of model systems
of differential equations, partly supported by experiments. The purpose of the discussion
in §§31 and 32 will be merely to give some account of these ideas, without going into the
relevant results of such studies. It should only be noted that the experimental results relate
to hydrodynamic flows in restricted volumes, and these are the flows to be considered in
what follows.t

First of all, the following important general remark is to be made. In the analysis of the
stability of periodic flow, only those multipliers are of interest whose moduli are close to 1
and which can cross the unit circle when R changes slightly. In viscous flow, the number of
these “dangerous” multipliers is always finite, for the following reason. The various types
(modes) of perturbation allowed by the equations of motion have different spatial scales,
1.e. distances over which v, varies significantly. As the scale of the motion decreases, the
velocity gradients in it increase and it is retarded to a greater extent by the viscosity. If the
allowed modes are arranged in order of decreasing scale, only a finite number at the

Tt Weshallin fact be concerned with thermal convection in restricted volumes, and with Couette flow between
coaxial cylinders with finite length. The theoretical ideas on the mechanism of turbulence formation in the
boundary layer and in the wake in flow past finite bodies have not so far been much developed, despite the
existence of a considerable quantity of experimental results.
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beginning can be dangerous; those sufficiently far along the sequence are certain to be
strongly damped and correspond to multipliers with small modulus. This enables us to
suppose that the possible types of instability of periodic viscous flow can be analysed in
essentially the same way as for a dissipative discrete mechanical system described by a
finite number of variables; hydrodynamically, these may be, for example, the amplitudes of
the Fourier components of the velocity field with respect to the coordinates. The space of
states correspondingly has a finite number of dimensions.

Mathematically, we have to consider the time variation of a system that is represented by
equations having the form

x(t) = F(x), (31.1)

where Xx(z) is a vector in the space of n quantities x), x®, . . . | x™ which describe the
system; the function F depends on a parameter whose variation may alter the nature of the
flow.T For a dissipative system, the divergence of x in x-space is negative; this expresses the
contraction of the volumes in that space during the motion:{

divk = divF = 0F®/ax® < 0, (31.2)

Let us now return to the possible results of interaction between different periodic flows.
Frequency locking simplifies the flow, but the interaction may also eliminate the quasi-
periodicity in such a way as to complicate the picture significantly. So far, it has been tacitly
assumed that when the periodic flow becomes unstable an additional periodic flow occurs.
This is not logically necessary, however. If the velocity fluctuation amplitudes are limited,
this means only that there is a limited volume in the space of states which contains the
paths corresponding to steady viscous flow, but we cannot say in advance what the pattern
of paths in that volume will be. They may tend to a limit cycle or to an open winding on the
torus (corresponding to periodic and quasi-periodic flow), or they may behave quite
differently, taking a complicated and confused form. This possibility is extremely
important for our understanding of the mathematical nature of turbulence formation and
the elucidation of its mechanism.

One can get an idea of the complicated and confused form of the paths within the
limited volume containing them, by assuming that all the paths in the volume are unstable.
They may include not only unstable cycles but also open paths which wind indefinitely
through the limited region, without leaving it. The instability signifies that two points very
close together in the space of states will move far apart as they continue along their
respective paths; points initially close together may also belong to the same path, since the
volume is limited and an open path can pass indefinitely close to itself. This complicated
and irregular behaviour of the paths is associated with turbulent flow.

This picture has a further feature: the sensitivity of the flow to small changes in the initial
conditions. If the flow is stable, a slight uncertainty in specifying these conditions causes
only a similar uncertainty in the determination of the final state. If the flow is unstable, the
initial uncertainty increases with time and the ultimate state of the system cannot be
predicted (N. S. Krylov 1944; M. Born 1952).

T In mathematical terms, F is the vector field of the system. If it does not depend explicitly on the time, as in
(31.1), the system is said to be autonomous.

1 For a Hamiltonian mechanical system, the divergence is zero by Liouville’s theorem; the components of x are
in that case the generalized coordinates ¢ and momenta p of the system.
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An attracting set of unstable paths in the space of states of a dissipative system can in
fact exist (E. N. Lorenz 1963), and it is usually called a stochastic attractor or strange
attractor.t

At first sight, the requirement that all paths belonging to the attractor be unstable
appears incompatible with the requirement that all adjacent paths tend to it as ¢t — oo,
since the instability implies that the paths move apart. The apparent contradiction is
eliminated if we note that the paths can be unstable in some directions in the space of states
and stable (that is, attractive) in other directions. In an n-dimensional space of states, the
paths belonging to a strange attractor cannot be unstable in all n—1 directions (one
direction being along the path), since this would mean a continuous increase in the initial
volume in the space of states, which is not possible for a dissipative system. Consequently,
adjacent paths tend towards the attractor paths in some directions and away from them in
other (unstable) directions; see Fig. 19. These are called saddle paths, and it is the set of
saddle paths that forms the strange attractor.

(5(t) Saddle

FiG. 19

The strange attractor may appear after only a few bifurcations forming new periods:
even an infinitesimal non-linearity can eliminate a quasi-periodic regime (an open winding
on the torus) and form a strange attractor on the torus (D. Ruelle and F. Takens 1971).
This cannot occur, however, at the second bifurcation (from the end of the steady regime).
Here, an open winding on the two-dimensional torus is formed. When the small non-
linearity is taken into account, the torus continues to exist, so that the strange attractor
could be accommodated on it. But a two-dimensional surface cannot carry an attracting
set of unstable paths. The reason is that paths in the space of states cannot intersect one
another (or themselves), since this would contradict the causality principle in the
behaviour of classical systems, whereby the state of the system at any instant uniquely
determines its behaviour at subsequent instants. On a two-dimensional surface, the
impossibility of intersections makes the paths so orderly that they cannot become
sufficiently random.

Even at the third bifurcation, however, a strange attractor can (but need not) be formed.
This attractor, which replaces the three-frequency quasi-periodic regime, lies on a three-
dimensional torus (S. Newhouse, D. Ruelle and F. Takens 1978).

The complicated and confused paths in a strange attractors lie in a limited volume in the
space of states. There is not yet a known classification of the possible types of strange
attractor that can occur in actual problems of fluid dynamics, nor even a set of criteria on

T Incontrast to ordinary attractors (stable limit cycles, limit points, and so on); the word “strange” reflects the
complexity of its structure, to be discussed later. In the physics literature, “strange attractor” also denotes more
complicated attracting manifolds containing stable as well as unstable paths, but having such small domains of
attraction as to be undetectable in either physical or numerical experiments.
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which such a classification should be based. The available information as to the structure
of strange attractors is derived essentially only from a study of instances arising in the
computer solution of model systems of ordinary differential equations, which are quite
different from the actual equations of fluid dynamics. It is, however, possible to draw some
general conclusions about the structure of strange attractors from the saddle-type
instability of the paths and the dissipative property of the system.

For clarity, we will refer to a three-dimensional space of states and imagine the attractor
inside a two-dimensional torus. Let us consider a set of paths on the way to the attractor, which
describe transient flow regimes leading to the establishment of “steady” turbulence. In a
transverse cross-section the paths, or rather their traces, occupy a certain area; let us see
how this area varies in size and shape along the paths. We note that the volume element
near a saddle path expands in one transverse direction and contracts in the other; since the
system is dissipative, the latter effect is the stronger, and volumes must decrease. These
directions must vary along the paths, since otherwise the latter would get too far away and
there would be too great a change in the fluid velocity. The net result is that the cross-
section becomes smaller, flattened, and curved. This should apply not only to the whole
cross-section but to every area element in it. It thus separates into nested zones separated
by voids. In the course of time (i.e. along the paths) the number of zones rapidly increases,
and they become narrower. The attractor formed as t — co consists of an uncountable
manifold of layers not in contact, whose surfaces carry the saddle paths (with their
attracting directions “outwards”). These layers are joined in a complicated manner at their -
sides and ends; each path belonging to the attractor wanders through all the layers and in
the course of a sufficiently long time passes indefinitely close to any point of the
attractor —the ergodic property. The total volume of the layers and their total cross-
sectional area are zero.

In mathematical language, such manifolds in one direction are Cantorian sets. The
Cantorian structure is the most characteristic property of the attractor and more generally
of an n-dimensional (n > 3) space of states.

The volume of the strange attractor in its space of states is always zero. It may, however,
be non-zero in another space with fewer dimensions. The latter is found as follows. We
divide the whole of n-dimensional space into small cubes with edge ¢ and volume &" . Let
N (¢) be the least number of cubes which completely cover the attractor. We define the
attractor dimension D as the limitt

— lim 108 N(e)

¢~o log (1/¢)

The existence of this limit signifies that the volume of the attractor in D-dimensional space
is finite: when ¢ is small, N(¢) = Ve -P (where V is a constant), and N (¢) may therefore be
regarded as the number of D-dimensional cubes covering the volume V¥ in D-dimensional
space. When defined in accordance with (31.3), the dimension evidently cannot exceed the

total dimension n of the space of states, but may be less, and unlike the ordinary dimension
it may be non-integral, as happens for Cantorian sets.}

(31.3)

t This is known in mathematics as the limiting capacity of the manifold. Its definition is similar to that of
HausdorfT or fractal dimensions.

{ The n-dimensional cubes covering the set may be “almost empty”, and for this reason we can have D < n.For
ordinary sets, the definition (31.3) gives obvious results. For example, with a set of N isolated points, N(g) = N

and D = 0; for a line segment with length L, N (¢) = L/e and D = 1; for a two-dimensional surface area A4, N (¢)
= S/¢* and D = 2; and so on.
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The following point is important. If turbulent flow is already established (the strange
attractor has been reached), then the flow in a dissipative system (a viscous fluid) is the
same in principle as stochastic flow of a non-dissipative system with a space of states
having fewer dimensions. This is because, for steady flow, the viscous dissipation of energy
is compensated on the average over a long time by the energy coming from the average
flow (or from some other source of disequilibrium). Consequently, if we trace the
development in time of a “volume” element belonging to the attractor (in some space
whose dimension is determined by that of the attractor), it will be conserved on average,
the compression in some directions being compensated by the extension due to the
divergence of adjacent paths in other directions. This property can be used to obtain a
different estimate of the attractor dimension.

Because the motion on the strange attractor is ergodic, as mentioned above, its average
properties can be established by analysing the motion along one unstable path belonging
to the attractor in the space of states. That is, we assume that an individual path reproduces
the properties of the attractor if the motion along it lasts for a sufficient time.

Let x = x, (¢) be the equation of such a path, a solution of (31.1). Let us consider the
deformation of a “spherical” volume element as it moves along this path. The deformation
is given by the equations (31.1) linearized with respect to the difference { = x — x, (), 1.e.
the deviation of paths adjacent to the one considered. These equations, written in
components, are

ED = A4, (&Y, Au()) = [OFD/0x®], _, - (31.4)

In the movement along the path, the volume element is compressed in some directions and
stretched in others, the sphere becoming an ellipsoid. Both the directions and the lengths
of the semi-axes vary; let the latter be [ (¢), where s labels the directions. The Lyapunov
characteristic indices are

()
10)°

where [(0) is the radius of the original sphere, at a time arbitrarily chosen as t = 0. The
quantities thus determined are real, and equal in number to the dimension n of the space.
One of them (corresponding to the direction along the path) is zero.t

The sum of the Lyapunov indices gives the mean change, along the path, in the volume
element in the space of states. The relative local change in volume at any point on the path
is given by the divergence div x = div { = A;; (t). It can be shown that the mean divergence
along the path is}

1
L= lim;log (31.5)

t— o0

t

nmljdivcdm Y L. (31.6)

t— s=1
0

For a dissipative system, this sum is negative; volumes in an n-dimensional space of states
are compressed. The dimension of the strange attractor is defined so that volumes are

+ Of course, the solution of (31.4), with specified initial conditions at ¢ = 0, actually represents an adjacent
path only if all the distances [, (¢) remain small. This, however, does not make meaningless the definition (31.5),
which involves indefinitely long times: for any large t, we can choose /(0) so small that the linearized equations
remain valid throughout the time concerned.

1 See V. 1. Oseledets, Transactions of the Moscow Mathematical Society 19, 197, 1969.
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conserved on average in “its” space. To do so, we arrange the Lyapunov indices in the order
L,=2L,>...2L, and take account of as many stable directions as is necessary to
compensate the stretching, by means of compression. The attractor dimension D, thus
defined is between m and m + 1, where m is the number of indices, in the sequence, whose
sum is still positive but becomes negative when L,, , , is included.t The fractional part of
D, =m+d (d < 1) is found from

S Li+L,,,d=0 (31.7)

(F. Ledrappier 1981). Since, in calculating d, we take into account only the least stable
directions (omitting the negative L, that are largest in modulus, at the end of the sequence),
the estimate D, of the dimension is in general too high. This estimate offers in principle a
way of determining the dimension of the attractor from measurements of the time
dependence of the velocity fluctuations in the turbulent flow.

§32. Transition to turbulence by period doubling

Let us now consider the loss of stability of a periodic flow when the multiplier passes
through —1 or +1.

In an n-dimensional space of states, n — 1 multipliers determine the behaviour of the
paths in n— 1 different directions near the periodic path considered (which are not the
same as the direction of the tangent at each point of that path). Let a multiplier near + 1
correspond to the Ith direction, say. The other n — 2 multipliers are small in modulus, and
therefore all the pathsin the corresponding n — 2 directions will in the course of time come
close to a two-dimensional surface X containing the Ith direction and the direction of the
tangents. One can say that near the limit cycle the space of states is almost two-dimensional
as t — oo (it cannot be strictly two-dimensional, since the paths can lie on either side of X
and go from one side to the other). Let the flux of paths near X be cut by a surface 6. Each
path, on repeatedly passing through o, determines in accordance with the initial point of
intersection X; the next point of intersection X, ,. The relation x;,; = f(x;; R)is called a
Poincaré mapping or sequence mapping; it depends on R, in this case the Reynolds
number,} whose value determines the closeness to the bifurcation where the periodic flow
ceases to be stable. Since all paths are close to X, the set of points where they meet o is
almost one-dimensional and can be approximated by a line; the Poincaré mapping
becomes the one-dimensional transformation

Xj+1 =f(xj; R), (32.1)

with x simply a coordinate along the line.}+ The discrete variable j acts as the time
measured in units of the period.

The mapping (32.1) affords an alternative method of determining the nature of the flow
near the bifurcation. The periodic flow itself corresponds to a fixed point of the
transformation (32.1) —the value x; = x, which is unchanged by the mapping, i.e. for
which x;,, = x;. The multiplier is the derivative 4 = dx;,,/dx; taken at x; = x,.The
points x; = x, + ¢ near x, are mapped into x;.; >~ x, + u&. The fixed point is stable (and

t Including the zero Lyapunov index adds one to D, , corresponding to the dimension along the path.
1 Or the Rayleigh number in the case of thermal convection (§56).
Tt In this section x has of course nothing to do with the coordinate in physical space.



§32 Transition to turbulence by period doubling 119

is an attractor of the mapping)if |u| < 1: by iterating the mapping and starting from some
point near x,, we asymptotically approach the latter, as |u|", where r is the number of
iterations. If || > 1, however, the fixed point is unstable.

Let us consider the loss of stability of periodic flow when the multiplier passes through
— 1. The equation u = — 1 signifies that the initial perturbation changes sign after a time
T, ,remaining the same in magnitude: after a further time Ty it returns to its original value.
Thus a passage of u through — 1 near a limit cycle with period T, creates a new limit cycle
with period 2T, (a period-doubling bifurcation).t Figure 20 gives a conventional
representation of two successive such bifurcations; the continuous curves in diagrams a

and b show the stable limit cycles 27, and 4T, the broken curves the limit cycles that have
become unstable.

(b)

Stable cycles
— ——=— Unstable cycles

FiG. 20

If we arbitrarily take the fixed point of the Poincar€ mapping as x = 0, the mapping near
it which describes the period-doubling bifurcation may be expressed as the expansion

xje1 = —[1+ R = Ry)]x;+ 2+ Bx 2, (322)

where p > 0.1 For R < R, the fixed point x, = 0 is stable; for R > R, it is unstable. In
order to see how the period-doubling occurs, we have to iterate the mapping (32.2) twice,
i.e. consider it after two steps (two time units) and determine the fixed points of the
re-formed mapping; if these exist and are stable, they correspond to the period-doubling
cycle.

The twofold iteration of the transformation (32.2) gives (with the necessary accuracy in
respect of the small quantities x; and R —R,) the mapping

Xj42 =X+ 2R —Ry)x;—2(1+ B)x>. (32.3)

This always has the fixed point x, = 0. When R < R, that point is the only one and is
stable, with the multiplier |dx; ,/dx;| < 1; for flow with period 1 (in units of T) the time

t In this section the basic period (that of the first periodic flow) is denoted by T,, not by T,. The critical
Reynolds numbers corresponding to successive period-doubling bifurcations will bedenoted here by R, R, . .
without the suffix cr (R, replaces the previous R, ).

1 The coefficient of R — R, can be made equal to unity by appropriately redefining R, and that of x; can be
made + 1 by redefining x;; we assume in (32.2) that this has been done.

9
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interval 2 is also a period. When R = R, the multiplier is + 1,and when R > R, the point
x, = 0 becomes unstable. At that stage, a pair of stable fixed points are formed,

R—-R
1,2 = 4 - ™ 32.4
x* _Jl: 1 ﬁ :Is ( )

corresponding to a stable limit cycle of the double periodf; the transformation (32.3) leaves
each of these points in position, while (32.2) changes each into the other. It must be
empbhasized that the single-period cycle does not disappear at this bifurcation, but remains
a solution (unstable) of the equations of motion.

Near the bifurcation, the motion is still “almost periodic” with period unity: the points
x," and x,® at which the paths return are close together. The interval x, ") —x,®
between them is a measure of the amplitude of the oscillations with period 2; it increases as
\/ (R —R,),similarly to the increase (26.10) in the amplitude of periodic flow after it begins
at the point where the steady flow becomes unstable.

The repetition of period-doubling bifurcations is one route to the formation of
turbulence. In this scenario the number of bifurcations is infinite, and they follow one
another (as R increases) at ever decreasing intervals; the sequence of critical values R,
R,, ... tends to a finite limit beyond which the periodicity disappears altogether and a
complex aperiodic attractor is created in the space, associated in this scenario with the
formation of turbulence. We shall see that the scenario has noteworthy properties of
universality and scale invariance (M. J. Feigenbaum 1978).%

The quantitative theory given below starts from the hypothesis that the bifurcations
follow one another (as R increases) so quickly that even in the intervals between them the
region occupied by the set of paths in the space of states remains almost two-dimensional,
and the whole sequence of bifurcations can be described by a one-dimensional Poincaré
mapping dependent on a single parameter.

The choice of mapping used below can be justified as follows. In a considerable part of
the range of variation of x, the mapping must be a stretching one with |df(x; 1)/dx| > 1;
this allows instabilities to occur. The mapping must also bring back to a given range the
paths that have left it, since otherwise the velocity fluctuations would increase without
limit, which is impossible. The two requirements can be simultaneously satisfied only by
non-monotonic functions f(x; 4), that is, mappings (32.1) that are not one-to-one: the x; . ;
values are uniquely determined by the preceding x;, but not conversely. The simplest form
of such a function has a single maximum, near which we put

with A a positive parameter which is to be regarded (in terms of fluid mechanics) as an
increasing function of R.}1 We shall arbitrarily take the segment [ — 1, + 1] as the range of

t To be called for brevity a 2-cycle. The relevant fixed points will be called cycle elements.

1 The sequence of period-doubling bifurcations (numbered below as 1, 2, . . .) need not begin with the first
bifurcation of the periodic flow. It may in principle begin after the first few bifurcations with the appearance of
incommensurate frequencies, when these have been locked by the mechanism discussed in §30.

1+ The admissibility of mappings that are not one-to-one depends on the approximateness of the one-
dimensional treatment. If all the paths were exactly on one surface I, so that the Poincaré mapping would be
strictly one-dimensional, this non-uniqueness would be impossible, since it would imply that two paths with
different x; intersected at x; . , . In the same sense, the approximateness is responsible for the possibility of a zero
multiplier if the fixed point of the mapping is at an extremum of the mapping function; such a point may be
described as “superstable”, and is approached more rapidly than according to the above relationship.
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variation of x; when 4 is between 0 and 2, all iterations of the mapping (32.5) leave x in that
range.

The transformation (32.5) has a fixed point at the root of x, = 1 — Ax, 2. This becomes
unstable when 4 > A, where A, is the value of A for which the multiplier p = —24x_ =
— 1; from the two equations, we find A, = 3/4. This is the first critical value of A, which
determines the position of the first period-doubling bifurcation and the appearance of the
2cycle. Let us now trace the appearance of subsequent bifurcations by means of an
approximate technique of determining some qualitative features of the process, though
this does not give exact values of the characteristic constants; exact statements will then be
formulated.

Repetition of the transformation (32.5) gives
Xjpp =1—A+24%x2 - 23x;*. (32.6)

Here we will neglect the term in x;*. The remaining equation is converted by the scale
transformationt

X;— X;[0g, 0 =1/(1—24)
to the form
Xj+2 = 1 -)lejz,
which differs from (32.5) only in that 4 is replaced by
A =@(A)=24%(A-1). (32.7)

Repeating this operation with the scale factors a; = 1/(1 —4,), etc., gives a sequence of
mappings having the same form:

Xom = 1=2X?, A= G(Apos). (32.8)

The fixed points of the mappings (32.8) correspond to 2™-cycles.} Since they all have the
same form as (32.5), we can deduce at once that the 2™cycles (m =1, 2, 3, ...) <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>