
Ordinary differential equations

Introduction

Many scientific problems can be formulated in terms of a system of ordinary differential equations (ODE),

y′(x) = f(x,y) , (1)

with an initial condition
y(x0) = y0 , (2)

where y′ ≡ dy/dx, and the boldface variables y and f(x,y) are generally understood as column-vectors.

Runge-Kutta methods

Runge-Kutta methods are one-step methods for numerical integration of ODE (1). The solution y is
advanced from the point x0 to x1 = x0 + h using a one-step formula

y1 = y0 + hk, (3)

where y1 is the approximation to y(x1), and k is a cleverly chosen (vector) constant. The Runge-Kutta
methods are distinguished by their order : a method has order p if it can integrate exactly an ODE where
the solution is a polynomyal of order p, or, in other words, if the error of the method is O(hp+1) for
small h.

The first order Runge-Kutta method is the Euler’s method,

k = f(x0,y0) . (4)

Second order Runge-Kutta methods advance the solution by an auxiliary evaluation of the derivative,
e.g. the mid-point method,

k0 = f(x0,y0) ,

k1/2 = f(x0 +
1
2
h,y0 +

1
2
hk0) ,

k = k1/2 , (5)

or the two-point method,

k0 = f(x0,y0),

k1 = f(x0 + h,y0 + hk0),

k =
1

2
(k0 + k1) . (6)

These two methods can be combined into a third order method,

k =
1

6
k0 +

4

6
k1/2 +

1

6
k1 . (7)

The most commont is the fourth-order method, which is called RK4 or simply the Runge-Kutta

method,

k0 = f(x0,y0) ,

k1 = f(x0 +
1
2
h,y0 +

1
2
hk0) ,

k2 = f(x0 +
1
2
h,y0 +

1
2
hk1) ,

k3 = f(x0 + h,y0 + hk2) ,

k = 1
6
(k0 + 2k1 + 2k2 + k3) . (8)

Higher order Runge-Kutta methods have been devised, with the most famous being the Runge-Kutta-
Fehlberg fourth/fifth order method, RKF45, implemented in the renowned rkf45.f Fortran routine.
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Multistep methods

Multistep methods try to use the information about the function gathered at the previous steps. They
are generally not self-starting as there are no previous points at the start of the integration.

A two-step method

Given two points, (x0,y0) and (x1,y1), the sought function y can be approximated in the vicinity of the
point x1 as

ȳ(x) = y1 + y′

1 · (x− x1) + c · (x− x1)
2, (9)

where y′

1 = f(x1,y1) and the coefficient c is found from the condition y(x0) = y0,

c =
y0 − y1 + y′

1 · (x1 − x0)

(x1 − x0)2
. (10)

The value of the function at the next point, x2, can now be estimated as ȳ(x2) from (9).

Predictor-corrector methods

Predictor-corrector methods use extra iterations to improve the solution. For example, the two-point
Runge-Kutta method (6) is as actually a predictor-corrector method, as it first calculates the prediction

ỹ1 for y(x1),
ỹ1 = y0 + f(x0,y0) , (11)

and then uses this prediction in a correction step,

˜̃y1 = y0 +
1

2
(f(x0,y0) + f(x1, ỹ1)) (12)

Similarly, one can use the two-step approximation (9) as a predictor, and then improve it by one
order with a correction step, namely

¯̄y(x) = ȳ(x) + d · (x− x1)
2(x− x0). (13)

The coefficient d can be found from the condition ¯̄y′(x2) = f̄2, where f̄2 = f(x2, ȳ(x2)),

d =
f̄2 − y′

1 − 2c · (x2 − x1)

2(x2 − x1)(x2 − x0) + (x2 − x1)2
. (14)

Equation (13) gives a better estimate, y2 = ¯̄y(x2), of the function at the point x2.
In this context the formula (9) is referred to as predictor, and (13) as corrector. The difference

between the two gives an estimate of the error.

Step size control

Error estimate

The error δy of the integration step for a given method can be estimated e.g. by comparing the solutions
for a full-step and two half-steps (the Runge principle),

δy ≈
ytwo half steps − yfull step

2p − 1
, (15)

where p is the order of the algorithm used. It is better to pick formulas where the full-step and two
half-step calculations share the evaluations of the function f(x,y).

Another possibility is to make the same step with two methods of different orders, the difference
between the solutions providing an estimate of the error.

In a predictor-corrector method the correction itself can serve as the estimate of the error.

2



Table 1: Runge-Kutta mid-point stepper with error estimate.

function rks tep ( f , x , y , h) { // Runge−Kutta midpoint s t ep
var k0 = f (x , y ) // d e r i v a t i v e at x0
var y12 = [ y [ i ]+k0 [ i ]∗h/2 for ( i i n y ) ] // ha l f−s t ep
var k12 = f (x+h/2 , y12 ) // d e r i v a t i v e at ha l f−s t ep
var y1 = [ y [ i ]+k12 [ i ]∗h for ( i i n y ) ] // f u l l s t ep
var dy = [ ( k12 [ i ]−k0 [ i ] ) ∗h/2 for ( i i n y ) ] // error e s t imate
return [ y1 , dy ] } //end r k s t e p

Adaptive step size control

Let tolerance τ be the maximal accepted error on the given integration step consistent with the required
absolute, δ, and relative, ǫ, accuracies to be achieved in the integration of an ODE,

τ = ǫ‖y‖+ δ , (16)

where ‖y‖ is the “norm” of the column-vector y.
Suppose the inegration is done in n steps of size hi such that

∑n
i=1 hi = b − a. Under assumption

that the errors at the integration steps are random and independent, the step tolerance τi for the step i
has to scale as the square root of the step size,

τi = τ

√

hi

b− a
. (17)

Then, if the error ei on the step i is less than the step tolerance, ei ≤ τh, the total error E will be
consistent with the total tolerance τ ,

E ≈

√

√

√

√

n
∑

i=1

e2i ≤

√

√

√

√

n
∑

i=1

τ2i = τ

√

√

√

√

n
∑

i=1

hi

b− a
= τ . (18)

In practice one uses the current values of the function y in the estimate of the tolerance,

τi = (ǫ‖yi‖+ δ)

√

hi

b− a
(19)

The step is accepted if the error is smaller than tolerance. The next step-size can be estimated
according to the empirical prescription

hnew = hold ×
(τ

e

)Power

× Safety, (20)

where Power ≈ 0.25, Safety ≈ 0.95. If the error ei is larger than tolerance τh the step is rejected and a
new step with the new step size (20) is attempted.
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Table 2: An ODE driver with adaptive step size control.

function r kd r i v e ( f , a , b , y0 , acc , eps , h) { //ODE dr i v e r :
// i n t e g r a t e s y ’= f ( x , y ) wi th ab so l u t e accuracy acc and r e l a t i v e accuracy eps
// from a to b with i n i t i a l condi t i on y0 and i n i t i a l s t ep h
// s t o r i n g the r e s u l t s in arrays x l i s t and y l i s t

var norm=function (v ) Math . s q r t ( v . reduce ( function ( a , b) a+b∗b , 0 ) ) ;
var x=a , y=y0 , x l i s t =[a ] , y l i s t =[y0 ] ;
while (x<b) {

i f (x+h>b) h=b−x // the l a s t s t ep has to land on ”b”
var [ y1 , dy]= rks tep ( f , x , y , h) ;
var e r r=norm(dy ) , t o l=(norm( y1 ) ∗ eps+acc ) ∗Math . s q r t (h/(b−a ) ) ;
i f ( er r<t o l ) {x+=h ; y=y1 ; x l i s t . push ( x ) ; y l i s t . push (y ) ;} // accept the s t ep
i f ( er r >0) h∗=Math . pow( t o l / err , 0 . 2 5 ) ∗ 0 . 9 5 ; else h∗=2;//new s t ep

}//end whi l e
return [ x l i s t , y l i s t ] ;

}// end r kdr i v e
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